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Joint work with G.Ch.Pflug

Joint work with Georg Pflug: SBB method

Norkin V.I., Pflug G.Ch. and Ruszczyński A. A branch and
bound method for stochastic global optimization, Math. Progr.,
1998, V. 83, 425-450.

Idea: Stochastic bounds in the B&B method
Interchange relaxation: minE ≥ Emin

Multiple independent observations for sharpening bounds
Similar idea: Marco Campi et al. (2006, 2008)
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Law of Large Numbers

LLN for random sets and set valued mappings

S(ξ, x) is a random set valued mapping
with expectation EξS(ξ, x)
{ξi, i = 1, 2, ..., ν} iid r.v.
LLN for for random sets (x is fixed):
Sν(x) := 1

ν

∑ν
i=1 S(ξi, x)

set conv. a.s.−→ EξcoS(ξ, x)
Artstein and Vitale (1975), Artstein and Hart (1981)

LLN for set valued mapping:
Sν(·) := 1

ν

∑ν
i=1 S(ξi, ·)

?−→ EξcoS(ξ, ·)
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Law of Large Numbers

LLN: Bounded mappings

LLN: Compact valued integrably bounded
mappings

Assumption: supx ‖S(ξ, x)‖ is integrable.

Theorem 1 ("Uniform" LLN, Shapiro and Xu (2007)).
∀ ε > 0 a.s.
limν→∞maxx∈X Dev (Sν(x),EcoS(ξ,Ballε(x)) = 0,
limν→∞maxx∈X Dev (EcoS(ξ, x), Sν(Ballε(x)) = 0.

Theorem 2 (graphical LLN):
gph 1

ν

∑ν
i=1 S(ξi, ·) −→ gphEξcoS(ξ, ·) a.s.

Theorem 3. Theorems 1 and 2 are equivalent.
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Law of Large Numbers

LLN: Unbounded mappings

LLN: Integrable unbounded closed valued
mappings

Theorem 4 (epi-LLN, Attouch and Wets (1990))
Assume s(ξ, x) is a random lsc function bounded from
below. Then
gph 1

ν

∑ν
i=1 (s(ξi, ·) + IR+) −→ (Eξ (s(ξ, ·) + IR+)

Theorem 5 (graphical LLN for sum S +K of bounded S
and unbounded K random osc mappings).
Assume

S(ξ, ·) is compact valued and integrably bounded.
K(ξ, ·) is outer semi-continuous and convex valued;
supx infy∈K(ξ,x) ‖y‖ is integrable;
K(ξ, x) ∈ EK(ξ, x) ∀ ξ, x.

Then
ghp 1

ν

∑ν
i=1(S(ξ, ·) +K(ξ, ·))→ cl-gphE(coS(ξ, ·) +K(ξ, ·))
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Law of Small Numbers

LSN: Concentration inequalities for random
mappings

LSN: Concentration of sample average around mean
Bounded random variables: Hoeffding (1963)
Random functions: Talagrand (1996)
Random vectors: Nemirovski (2004, 2008)
Random sets: Artstein (1984)

Theorem 6 (LSN: concentration of random graphs)
Assume S(ξ, ·) is discretely distributed and bounded by
‖S(X)‖, then for sample average Sν holds:
Prob {

√
ν Dist(gphSν ,gphES) > (1 + t)‖S(X)‖} ≤

≤ Prob {
√
ν supx(S

ν(x),ES(ξ, x)) > (1 + t)‖S(X)‖} ≤
≤ exp

[
−t2/4

]
.
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LLN for nonintegrable random variables

LLN for nonintegrable random variables

Exercise. {ξi} are independent uniformly distributed on [-1,+1].

1

ν

ν∑
i=1

1

ξi

?−→ ?

Random variable S(ξ) = 1/ξ is not integrable.

Theorem (Chow and Robbins (1961)). For any nonintegrable
random variable S(ξ) there is no normalizing sequence mν

such that

lim
ν

1

mν

ν∑
i=1

S(ξi) = C,

where {ξi} are iid and 0 < C <∞, so no LLN can hold.
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LLN for nonintegrable random variables

Conjecture

Numerical experiments give the basis for the following
conjecture. Let ξ is uniform in [-1,+1], α > 0,

S(ξ) =

{
sgn(ξ)/|ξ|1+α, ξ 6= 0,
0, ξ = 0,

Conjecture. Normalized sums

Sν =
1

ν1+α

ν∑
i=1

S(ξi)

converge as ν −→∞ to some fixed (non normal) universal
distribution concentrated around zero.
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