Vladimir Norkin & Roger J-B Wets

Glushkov Institute of Cybernetics, Kiev & University of California, Davis

Anniversary Workshop on Stochastics and Optimal Decisions under Uncertainty in honour of Prof. Georg Pflug, Vienna, September 9, 2011

Outline

Outline

- Joint work with Georg Pflug
- LLN for random set valued mappings
 - LLN: integrably bounded case
 - LLN: unbounded case
- LSN: Concentration inequalities for random mappings
- LLN for nonintegrable random variable: Open problem

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

References

Joint work with G.Ch.Pflug

Joint work with Georg Pflug: SBB method

Norkin V.I., Pflug G.Ch. and Ruszczyński A. A branch and bound method for stochastic global optimization, Math. Progr., 1998, V. 83, 425-450.

- Idea: Stochastic bounds in the B&B method
- Interchange relaxation: $\min \mathbb{E} \ge \mathbb{E} \min$
- Multiple independent observations for sharpening bounds Similar idea: Marco Campi et al. (2006, 2008)

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Law of Large Numbers

LLN for random sets and set valued mappings

 S(ξ, x) is a random set valued mapping with expectation E_ξS(ξ, x)

•
$$\{\xi_i, i = 1, 2, ..., \nu\}$$
 iid r.v.

- LLN for for random sets (*x* is fixed): $S^{\nu}(x) := \frac{1}{\nu} \sum_{i=1}^{\nu} S(\xi_i, x) \xrightarrow{set \ conv. \ a.s.} \mathbb{E}_{\xi} coS(\xi, x)$ Artstein and Vitale (1975), Artstein and Hart (1981)
- LLN for set valued mapping:

$$S^{\nu}(\cdot) := \frac{1}{\nu} \sum_{i=1}^{\nu} S(\xi_i, \cdot) \xrightarrow{?} \mathbb{E}_{\xi} \mathbf{co} S(\xi, \cdot)$$

Law of Large Numbers

LLN: Bounded mappings

LLN: Compact valued integrably bounded mappings

- Assumption: $\sup_{x} ||S(\xi, x)||$ is integrable.
- **Theorem 1** ("Uniform" LLN, Shapiro and Xu (2007)). $\forall \varepsilon > 0$ a.s. $\lim_{\nu \to \infty} \max_{x \in X} \text{Dev} (S^{\nu}(x), \mathbb{E} \text{co} S(\xi, \text{Ball}_{\varepsilon}(x)) = 0,$ $\lim_{\nu \to \infty} \max_{x \in X} \text{Dev} (\mathbb{E} \text{co} S(\xi, x), S^{\nu}(\text{Ball}_{\varepsilon}(x)) = 0.$
- **Theorem 2** (graphical LLN): $gph_{\overline{\nu}}^{1} \sum_{i=1}^{\nu} S(\xi_{i}, \cdot) \longrightarrow gph\mathbb{E}_{\xi} coS(\xi, \cdot)$ a.s.
- Theorem 3. Theorems 1 and 2 are equivalent.

Law of Large Numbers

LLN: Unbounded mappings

LLN: Integrable unbounded closed valued mappings

- Theorem 4 (epi-LLN, Attouch and Wets (1990))
 Assume s(ξ, x) is a random lsc function bounded from below. Then
 gph¹/_ν Σ^ν_{i=1} (s(ξ_i, ·) + ℝ₊) → (𝔼_ξ (s(ξ, ·) + ℝ₊))
- **Theorem 5** (graphical LLN for sum *S* + *K* of bounded *S* and unbounded *K* random osc mappings). Assume
 - $S(\xi, \cdot)$ is compact valued and integrably bounded.
 - $K(\xi, \cdot)$ is outer semi-continuous and convex valued;
 - $\sup_x \inf_{y \in K(\xi,x)} \|y\|$ is integrable;
 - $K(\xi, x) \in \mathbb{E}K(\xi, x) \ \forall \ \xi, \ x.$

Then

 $\mathsf{ghp}_{\overline{\nu}}^{1} \sum_{i=1}^{\nu} (S(\xi, \cdot) + K(\xi, \cdot)) \to \mathsf{cl-gph}\mathbb{E}(coS(\xi, \cdot) + K(\xi, \cdot))$

 $\leq \exp\left[-t^2/4\right]$.

Law of Small Numbers

LSN: Concentration inequalities for random mappings

- LSN: Concentration of sample average around mean
 - Bounded random variables: Hoeffding (1963)
 - Random functions: Talagrand (1996)
 - Random vectors: Nemirovski (2004, 2008)
 - Random sets: Artstein (1984)
- **Theorem 6** (LSN: concentration of random graphs) Assume $S(\xi, \cdot)$ is discretely distributed and bounded by ||S(X)||, then for sample average S^{ν} holds: Prob $\{\sqrt{\nu} \ Dist(gphS^{\nu}, gph\mathbb{E}S) > (1+t)||S(X)||\} \le$ $\leq \operatorname{Prob} \{\sqrt{\nu} \ \sup_{x} (S^{\nu}(x), \mathbb{E}S(\xi, x)) > (1+t)||S(X)||\} \le$

< ロ > < 何 > < 三 > < 三 > 、 三 > 、 う へ 〇

LLN for nonintegrable random variables

LLN for nonintegrable random variables

Exercise. $\{\xi_i\}$ are independent uniformly distributed on [-1,+1].

$$rac{1}{
u} \sum_{i=1}^{
u} rac{1}{\xi_i} \stackrel{?}{
ightarrow}$$
 ?

Random variable $S(\xi) = 1/\xi$ is not integrable.

Theorem (Chow and Robbins (1961)). For any nonintegrable random variable $S(\xi)$ there is no normalizing sequence m_{ν} such that

$$\lim_{\nu} \frac{1}{m_{\nu}} \sum_{i=1}^{\nu} S(\xi_i) = C,$$

where $\{\xi_i\}$ are iid and $0 < C < \infty$, so no LLN can hold.

・ロト・日本・日本・日本・日本

LLN for nonintegrable random variables

Conjecture

Numerical experiments give the basis for the following conjecture. Let ξ is uniform in [-1,+1], $\alpha > 0$,

$$S(\xi) = \begin{cases} \operatorname{sgn}(\xi)/|\xi|^{1+\alpha}, & \xi \neq 0, \\ 0, & \xi = 0, \end{cases}$$

Conjecture. Normalized sums

$$S^{\nu} = \frac{1}{\nu^{1+\alpha}} \sum_{i=1}^{\nu} S(\xi_i)$$

converge as $\nu \longrightarrow \infty$ to some fixed (non normal) universal distribution concentrated around zero.

References

Summary of references

Random sets

Artstein and Vitale (1975) Artstein and Hart (1981) Cressie (1979) Weil (1982) **Concentration** Artstein (1981)

Nemirovski (2004) Nemirovski and Juditski (2008)

Random mappings

Attouch and Wets (1990) Shapiro and Xu (2007) Terán (2008) Shapiro (2003, 2009)

Ledoux and Talagrand (1991) Talagrand (1996) Ledoux (2001)

Sealed

Thank you for your attention!