Strong Results on Weak Derivatives

Bernd Heidergott

Department of Econometrics and Operations Research Vrije Universiteit Amsterdam

Anniversary Workshop on the occasion of Prof. Georg Pflug's 60th birthday September 9, 2011

Outline of the Talk

1987, the Beginning

Weak Derivatives in a Nutshell

The Years 1990 to 1996

The Years 1996 to 2011

1987, the Beginning

254
Definition 1. A function $x \longrightarrow \mu_{x}$, mapping an open subset of \mathbb{R}^{k} into M_{1} is called weakly differentiable at the point x, if there is a k-vektor of signed finite measures $\mu_{x}^{\prime}:=\left(\mu_{x}^{\prime(1)}, \quad, \mu_{x}^{\prime(k)}\right) ; \mu^{\prime(i)} \in n$ such that

$$
\begin{equation*}
\left|\left\langle g, \mu_{x+h}\right\rangle-\left\langle g, \mu_{x}\right\rangle-\sum h_{i}\left\langle g, \mu_{x}^{\prime(i)}\right\rangle\right|=o(| | h|j\rangle \tag{2}
\end{equation*}
$$

for all $g \in C(S)$ as $h \rightarrow 0$. Here $o(\cdot)$ may depend on g.
The derivative μ_{x}^{*} may be represented as

$$
\mu_{\mathrm{x}}^{\dot{\prime}}=\left[\mathrm{c}_{1}\left(\dot{\mu}_{\mathrm{x}}^{(1)}-\dot{\mu}_{\mathrm{x}}^{(1)}\right), c_{2}\left(\dot{\mu}_{\mathrm{x}}^{(2)}-\ddot{\mu}_{\mathrm{x}}^{(2)}\right), \ldots, \mathrm{c}_{\mathrm{k}}\left(\dot{\mu}_{\mathrm{x}}^{(h)}-\ddot{\mu}_{\mathrm{x}}^{(k)}\right)\right]
$$

where $\dot{\mu}_{\mathrm{x}}^{(\mathrm{i})}, \ddot{\mu}_{\mathrm{x}}^{(\mathrm{i})} \in{M_{1}}_{1}$. We do not require that $\dot{\mu}_{\mathrm{x}}^{(\mathrm{i})}$ and $\ddot{\mu}_{\mathrm{x}}^{(\mathrm{i})}$ are orthogonal of each other, bearing however in mind that c_{i} is minimized if $\dot{\mu}_{x}^{(i)} \perp \ddot{\mu}_{x}^{(i)}$. Note that $\left\langle g, \mu_{\mathrm{x}}^{\prime(\mathrm{i}\rangle}\right\rangle=0$ for the constant function $g \equiv 1$, since $\left\langle g, \mu_{\mathrm{x}}\right\rangle \equiv 1$.

1) If $\mathrm{x} \longrightarrow \mu_{\mathrm{x}}$ and $\mathrm{x} \longrightarrow \nu_{\mathrm{x}}$ is differentiable, with derivative ($\mathrm{c}, \dot{\mu}_{\mathrm{x}}, \ddot{\mu}_{\mathrm{x}}$) resp. ($\alpha, \dot{\nu}_{x} \ddot{\nu}_{x}$), then $x \rightarrow \alpha \mu_{x}+(1-\alpha) \nu_{x}$ is differentiable with derivative

$$
\left[\alpha c+(1-\alpha) \mathrm{d}, \frac{\alpha c \dot{\mu}_{\mathrm{x}}+(1-\alpha) \mathrm{d} \dot{u}_{x}}{\alpha c+(1-\alpha) \mathrm{d}}, \frac{\alpha c \ddot{\mu}_{\mathrm{x}}+(1-\alpha) \mathrm{d} \dot{u}_{x}}{\alpha c+(1-\alpha) d}\right]
$$

(Note that $\alpha \dot{\mu}_{x}+(1-\alpha) \dot{\nu}_{x}$ is in general not orthogonal to $\alpha \ddot{\mu}_{x}+(1-\alpha) \ddot{\nu}_{x}$).
2) Under the same assumptions $x \longrightarrow \mu_{x}{ }^{\star} \nu_{X}$ (convolution) is differentiable with derivative

$$
\left(\mathrm{c}+\mathrm{d}, \frac{\mathrm{c}}{\mathrm{c}+\mathrm{d}} \dot{\mu}_{\mathrm{x}}^{*} \nu_{\mathrm{x}}+\frac{\mathrm{d}}{\mathrm{c}+\mathrm{d}} \mu_{\mathrm{x}}{ }^{*} \dot{\nu}_{\mathrm{x}}, \frac{\mathrm{c}}{\mathrm{c}+\mathrm{d}} \ddot{\mu}_{\mathrm{x}}{ }^{\star} \nu_{\mathrm{x}}+\frac{\mathrm{d}}{\mathrm{c}+\mathrm{d}} \mu_{\mathrm{x}}{ }^{*} \ddot{\nu}_{\mathrm{x}}\right)
$$

3) If T is a measurable transformation which maps μ_{x} onto μ_{X}^{T} i.e.

$$
\mu_{\mathrm{x}}^{\mathrm{T}}(\mathrm{~A}):=\mu_{\mathrm{x}}\left(\mathrm{~T}^{-1}(\mathrm{~A})\right)
$$

then $x \longrightarrow \mu_{x}^{T}$ is differentiable with derivative $\left(c, \dot{\mu}_{x}^{T}, \ddot{\mu}_{x}^{T}\right)$

Weak Derivatives in a Nutshell

The Formal Set-Up

Let (S, \mathcal{S}) be a measurable space and let $\left(\mu_{\theta}: \theta \in \Theta\right)$ be a family of measures on (S, \mathcal{S}), where $\Theta=(a, b) \subset \mathbb{R}$.

Let \mathcal{D} be some set of measurable real-valued mappings defined on S.
Definition
We call μ_{θ}^{\prime} the D-derivative of μ_{θ} if

$$
\frac{d}{d \theta} \int g(s) \mu_{\theta}(d s)=\int g(s) \mu_{\theta}^{\prime}(d s)
$$

If we take $\mathcal{D}=C_{b}$, the set of bounded continuous mappings, then the above definition recovers Georg's early definition from 1987.

The Formal Set-Up

Let (S, \mathcal{S}) be a measurable space and let $\left(\mu_{\theta}: \theta \in \Theta\right)$ be a family of measures on (S, \mathcal{S}), where $\Theta=(a, b) \subset \mathbb{R}$.

Let \mathcal{D} be some set of measurable real-valued mappings defined on S.
Definition
We call μ_{θ}^{\prime} the D-derivative of μ_{θ} if

If we take $\mathcal{D}=C_{b}$, the set of bounded continuous mappings, then the above definition recovers Georg's early definition from 1987.

The Formal Set-Up

Let (S, \mathcal{S}) be a measurable space and let $\left(\mu_{\theta}: \theta \in \Theta\right)$ be a family of measures on (S, \mathcal{S}), where $\Theta=(a, b) \subset \mathbb{R}$.

Let \mathcal{D} be some set of measurable real-valued mappings defined on S.
Definition
We call μ_{θ}^{\prime} the \mathcal{D}-derivative of μ_{θ} if

$$
\forall g \in \mathcal{D}: \quad \frac{d}{d \theta} \int g(s) \mu_{\theta}(d s)=\int g(s) \mu_{\theta}^{\prime}(d s)
$$

The Formal Set-Up

Let (S, \mathcal{S}) be a measurable space and let $\left(\mu_{\theta}: \theta \in \Theta\right)$ be a family of measures on (S, \mathcal{S}), where $\Theta=(a, b) \subset \mathbb{R}$.

Let \mathcal{D} be some set of measurable real-valued mappings defined on S.
Definition
We call μ_{θ}^{\prime} the \mathcal{D}-derivative of μ_{θ} if

$$
\forall g \in \mathcal{D}: \quad \frac{d}{d \theta} \int g(s) \mu_{\theta}(d s)=\int g(s) \mu_{\theta}^{\prime}(d s)
$$

If we take $\mathcal{D}=C_{b}$, the set of bounded continuous mappings, then the above definition recovers Georg's early definition from 1987.

The Triple Representation

Let μ_{θ} be a \mathcal{D}-differentiable probability measure, with $C_{b} \subset \mathcal{D}$, then probability measures μ_{θ}^{+}and μ_{θ}^{-}and a finite constant c_{θ} exist such that for all $g \in \mathcal{D}$:

$$
\frac{d}{d \theta} \int g(s) \mu_{\theta}(d s)=c_{\theta}\left(\int g(s) \mu_{\theta}^{+}(d s)-\int g(s) \mu_{\theta}^{-}(d s)\right) .
$$

- Derivatives can be estimated/computed by means of differences of stochastic experiments.
- This concept has been successfully applied for stochastic optimization in operations research.

The Triple Representation

Let μ_{θ} be a \mathcal{D}-differentiable probability measure, with $C_{b} \subset \mathcal{D}$, then probability measures μ_{θ}^{+}and μ_{θ}^{-}and a finite constant c_{θ} exist such that for all $g \in \mathcal{D}$:

$$
\frac{d}{d \theta} \int g(s) \mu_{\theta}(d s)=c_{\theta}\left(\int g(s) \mu_{\theta}^{+}(d s)-\int g(s) \mu_{\theta}^{-}(d s)\right) .
$$

- Derivatives can be estimated/computed by means of differences of stochastic experiments.
- This concept has been successfully applied for stochastic optimization in operations research.

The Triple Representation

Let μ_{θ} be a \mathcal{D}-differentiable probability measure, with $C_{b} \subset \mathcal{D}$, then probability measures μ_{θ}^{+}and μ_{θ}^{-}and a finite constant c_{θ} exist such that for all $g \in \mathcal{D}$:

$$
\frac{d}{d \theta} \int g(s) \mu_{\theta}(d s)=c_{\theta}\left(\int g(s) \mu_{\theta}^{+}(d s)-\int g(s) \mu_{\theta}^{-}(d s)\right) .
$$

- Derivatives can be estimated/computed by means of differences of stochastic experiments.
- This concept has been successfully applied for stochastic optimization in operations research.

Example, I

First, lets have a look at a probability measure μ_{θ} that has a nice density.
Let μ_{θ} be a measure on \mathbb{R} with Lebesgue density f_{θ}.
If $f_{\theta}(x)$ is differentiable with respect to θ for $x \in \mathbb{R}$, then

$$
\frac{d}{d \theta} \int g(x) \mu_{\theta}(d x)=\frac{d}{d \theta} \int g(x) f_{\theta}(x) d x=\int g(x) f_{\theta}^{\prime}(x) d x
$$

provided interchanging differentiation and integration is allowed for g. Now separating the positive and negative part of f_{θ}^{\prime} yields

$$
\int g(x) f_{\theta}^{\prime}(x) d x=\int g(x) \max \left(f_{\theta}^{\prime}(x), 0\right) d x-\int g(x) \max \left(-f_{\theta}^{\prime}(x), 0\right) d x
$$

Example, I

First, lets have a look at a probability measure μ_{θ} that has a nice density.
Let μ_{θ} be a measure on \mathbb{R} with Lebesgue density f_{θ}.
If $f_{\theta}(x)$ is differentiable with respect to θ for $x \in \mathbb{R}$, then

$$
\frac{d}{d \theta} \int g(x) \mu_{\theta}(d x)=\frac{d}{d \theta} \int g(x) f_{\theta}(x) d x=\int g(x) f_{\theta}^{\prime}(x) d x
$$

provided interchanging differentiation and integration is allowed for g. Now separating the positive and negative part of f_{θ}^{\prime} yields

$$
\int g(x) f_{\theta}^{\prime}(x) d x=\int g(x) \max \left(f_{\theta}^{\prime}(x), 0\right) d x-\int g(x) \max \left(-f_{\theta}^{\prime}(x), 0\right) d x
$$

Example, I

First, lets have a look at a probability measure μ_{θ} that has a nice density.
Let μ_{θ} be a measure on \mathbb{R} with Lebesgue density f_{θ}.
If $f_{\theta}(x)$ is differentiable with respect to θ for $x \in \mathbb{R}$, then

$$
\frac{d}{d \theta} \int g(x) \mu_{\theta}(d x)=\frac{d}{d \theta} \int g(x) f_{\theta}(x) d x=\int g(x) f_{\theta}^{\prime}(x) d x
$$

provided interchanging differentiation and integration is allowed for g.

Example, I

First, lets have a look at a probability measure μ_{θ} that has a nice density.
Let μ_{θ} be a measure on \mathbb{R} with Lebesgue density f_{θ}.
If $f_{\theta}(x)$ is differentiable with respect to θ for $x \in \mathbb{R}$, then

$$
\frac{d}{d \theta} \int g(x) \mu_{\theta}(d x)=\frac{d}{d \theta} \int g(x) f_{\theta}(x) d x=\int g(x) f_{\theta}^{\prime}(x) d x
$$

provided interchanging differentiation and integration is allowed for g. Now separating the positive and negative part of f_{θ}^{\prime} yields

$$
\int g(x) f_{\theta}^{\prime}(x) d x=\int g(x) \max \left(f_{\theta}^{\prime}(x), 0\right) d x-\int g(x) \max \left(-f_{\theta}^{\prime}(x), 0\right) d x
$$

Example, II

In a concrete situation easier to use representations can be found.

Let f_{θ} be the density of the exponential distribution with rate θ and let h_{θ} be the density of the Erlang-2-distribution with parameter θ, then

$$
\int g(x) f_{\theta}^{\prime}(x) d x=\frac{1}{\theta}\left(\int g(x) f_{\theta}(x) d x-\int g(x) h_{\theta}(x) d x\right)
$$

for all $g(x)$ bounded by a polynomial in $x($ which is a choice for $\mathcal{D})$.

In shorthand notation:

$$
\operatorname{Exponential}(\theta)^{\prime}=\left(\frac{1}{\theta}, \operatorname{Exponential}(\theta), \operatorname{Erlang}(2, \theta)\right)
$$

So, one part of the derivative is already given by the nominal experiment.

Example, II

In a concrete situation easier to use representations can be found.
Let f_{θ} be the density of the exponential distribution with rate θ and let h_{θ} be the density of the Erlang-2-distribution with parameter θ, then

$$
\int g(x) f_{\theta}^{\prime}(x) d x=\frac{1}{\theta}\left(\int g(x) f_{\theta}(x) d x-\int g(x) h_{\theta}(x) d x\right)
$$

for all $g(x)$ bounded by a polynomial in x (which is a choice for \mathcal{D}).
In shorthand notation:

Example, II

In a concrete situation easier to use representations can be found.
Let f_{θ} be the density of the exponential distribution with rate θ and let h_{θ} be the density of the Erlang-2-distribution with parameter θ, then

$$
\int g(x) f_{\theta}^{\prime}(x) d x=\frac{1}{\theta}\left(\int g(x) f_{\theta}(x) d x-\int g(x) h_{\theta}(x) d x\right)
$$

for all $g(x)$ bounded by a polynomial in x (which is a choice for \mathcal{D}).
In shorthand notation:

$$
\operatorname{Exponential}(\theta)^{\prime}=\left(\frac{1}{\theta}, \operatorname{Exponential}(\theta), \operatorname{Erlang}(2, \theta)\right)
$$

So, one part of the derivative is already given by the nominal experiment.

Example, II

In a concrete situation easier to use representations can be found.
Let f_{θ} be the density of the exponential distribution with rate θ and let h_{θ} be the density of the Erlang-2-distribution with parameter θ, then

$$
\int g(x) f_{\theta}^{\prime}(x) d x=\frac{1}{\theta}\left(\int g(x) f_{\theta}(x) d x-\int g(x) h_{\theta}(x) d x\right)
$$

for all $g(x)$ bounded by a polynomial in x (which is a choice for \mathcal{D}).
In shorthand notation:

$$
\operatorname{Exponential}(\theta)^{\prime}=\left(\frac{1}{\theta}, \operatorname{Exponential}(\theta), \operatorname{Erlang}(2, \theta)\right)
$$

So, one part of the derivative is already given by the nominal experiment.

Example, III

Let μ_{θ} denote the uniform distribution on $[0, \theta]$.
Then it holds for all $g \in C_{b}$ that

$$
\frac{d}{d \theta}\left(\frac{1}{\theta} \int_{0}^{\theta} g(x) d x\right)=\frac{1}{\theta}\left(\int_{0}^{\theta} g(x) \delta_{\theta}(d x)-\frac{1}{\theta} \int_{0}^{\theta} g(x) d x\right)
$$

with $\delta_{\theta}(\cdot)$ denoting the Dirac measure in θ. In shorthand notation:

$$
\operatorname{Uniform}(\theta)^{\prime}=\left(\frac{1}{\theta}, \operatorname{Dirac}(\theta), \text { Uniform }(\theta)\right)
$$

So, again one part of the derivative is already given by the nominal experiment.

Example, III

Let μ_{θ} denote the uniform distribution on $[0, \theta]$.
Then it holds for all $g \in C_{b}$ that

$$
\frac{d}{d \theta}\left(\frac{1}{\theta} \int_{0}^{\theta} g(x) d x\right)=\frac{1}{\theta}\left(\int_{0}^{\theta} g(x) \delta_{\theta}(d x)-\frac{1}{\theta} \int_{0}^{\theta} g(x) d x\right)
$$

with $\delta_{\theta}(\cdot)$ denoting the Dirac measure in θ.
$\operatorname{Uniform}(\theta)^{\prime}=\left(\frac{1}{\theta}, \operatorname{Dirac}(\theta), \operatorname{Uniform}(\theta)\right)$

Example, III

Let μ_{θ} denote the uniform distribution on $[0, \theta]$.
Then it holds for all $g \in C_{b}$ that

$$
\frac{d}{d \theta}\left(\frac{1}{\theta} \int_{0}^{\theta} g(x) d x\right)=\frac{1}{\theta}\left(\int_{0}^{\theta} g(x) \delta_{\theta}(d x)-\frac{1}{\theta} \int_{0}^{\theta} g(x) d x\right)
$$

with $\delta_{\theta}(\cdot)$ denoting the Dirac measure in θ. In shorthand notation:

$$
\operatorname{Uniform}(\theta)^{\prime}=\left(\frac{1}{\theta}, \operatorname{Dirac}(\theta), \operatorname{Uniform}(\theta)\right)
$$

Example, III

Let μ_{θ} denote the uniform distribution on $[0, \theta]$.
Then it holds for all $g \in C_{b}$ that

$$
\frac{d}{d \theta}\left(\frac{1}{\theta} \int_{0}^{\theta} g(x) d x\right)=\frac{1}{\theta}\left(\int_{0}^{\theta} g(x) \delta_{\theta}(d x)-\frac{1}{\theta} \int_{0}^{\theta} g(x) d x\right)
$$

with $\delta_{\theta}(\cdot)$ denoting the Dirac measure in θ. In shorthand notation:

$$
\operatorname{Uniform}(\theta)^{\prime}=\left(\frac{1}{\theta}, \operatorname{Dirac}(\theta), \operatorname{Uniform}(\theta)\right)
$$

So, again one part of the derivative is already given by the nominal experiment.

Questions Raised

- What is the added value of weak differentiability?

What is the best choice of \mathcal{D} ?

Let's go back to 1987. Did Georg address these questions?

Not really, instead he worked on something bigger: the extension to Markov chains.

Questions Raised

- What is the added value of weak differentiability?
- What is the best choice of \mathcal{D} ?

Let's go back to 1987. Did Georg address these questions?

Not really, instead he worked on something bigger: the extension to Markov chains.

Questions Raised

- What is the added value of weak differentiability?
- What is the best choice of \mathcal{D} ?

Let's go back to 1987. Did Georg address these questions?

Not really, instead he worked on something bigger: the extension to Markov chains.

Questions Raised

- What is the added value of weak differentiability?
- What is the best choice of \mathcal{D} ?

Let's go back to 1987. Did Georg address these questions?

Not really, instead he worked on something bigger: the extension to Markov chains.

Questions Raised

- What is the added value of weak differentiability?
- What is the best choice of \mathcal{D} ?

Let's go back to 1987. Did Georg address these questions?
Not really, instead he worked on something bigger: the extension to Markov chains.

The Years 1990 to 1996

1990: XV. Symposium on OR

Georg gave a lecture at the XV. Symposium on Operations Research (1990, Vienna) on his breakthrough result for Markov chains:

$$
\pi_{\theta}^{\prime}=\pi_{\theta} \sum_{n=0}^{\infty} P_{\theta}^{\prime} P_{\theta}^{n} .
$$

Published as: On-Line Optimization of Simulated Markovian Processes Mathematics of Operations Research, 1990, pp. 381-395

This was the first time that I heard of weak derivatives and my interest in the topic brought me to the event on the next slide...

1990: XV. Symposium on OR

Georg gave a lecture at the XV. Symposium on Operations Research (1990, Vienna) on his breakthrough result for Markov chains:

$$
\pi_{\theta}^{\prime}=\pi_{\theta} \sum_{n=0}^{\infty} P_{\theta}^{\prime} P_{\theta}^{n}
$$

Published as: On-Line Optimization of Simulated Markovian Processes Mathematics of Operations Research, 1990, pp. 381-395

This was the first time that I heard of weak derivatives and my interest in the topic brought me to the event on the next slide..

1990: XV. Symposium on OR

Georg gave a lecture at the XV. Symposium on Operations Research (1990, Vienna) on his breakthrough result for Markov chains:

$$
\pi_{\theta}^{\prime}=\pi_{\theta} \sum_{n=0}^{\infty} P_{\theta}^{\prime} P_{\theta}^{n}
$$

Published as: On-Line Optimization of Simulated Markovian Processes Mathematics of Operations Research, 1990, pp. 381-395

This was the first time that I heard of weak derivatives and my interest in the topic brought me to the event on the next slide...

1992: The Raach Workshop

1992: The Raach Workshop

3.11 Definition. A function $x \mapsto \mu_{x}$, mapping an open subset of \mathbb{R}^{d} into P is called weakly differentiable at the point x, if there is a d-vector of signed finite measures $\mu_{x}^{\prime}:=\left(\mu_{x, 1}^{\prime}, \cdots, \mu_{x, d}^{\prime}\right) ; \mu_{x, i}^{\prime} \in$ \mathcal{M} such that

$$
\begin{equation*}
\|s\|^{-1} \cdot\left|<H, \mu_{x+s}>-<H, \mu_{x}>-\sum_{i=1}^{d} s_{i} \cdot<H, \mu_{x, i}^{\prime}>\right| \rightarrow 0 \tag{3.8}
\end{equation*}
$$

as $s \rightarrow 0$ for all $H \in C_{b}(R)$, where $s=\left(s_{1}, \ldots, s_{d}\right) \in \mathbb{R}^{d}$. As in (??), the derivative μ_{x}^{\prime} may be represented as

$$
\begin{equation*}
\mu_{x}^{\prime}=\left(c_{x, 1}\left(\dot{\mu}_{x, 1}-\ddot{\mu}_{x, 1}\right), c_{x, 2}\left(\dot{\mu}_{x, 2}-\ddot{\mu}_{x, 2}\right), \ldots, c_{x, d}\left(\dot{\mu}_{x, d}-\ddot{\mu}_{x, d}\right)\right) \tag{3.9}
\end{equation*}
$$

where $\dot{\mu}_{x, i}, \ddot{\mu}_{x, i} \in \mathcal{P}$. We do not require that $\dot{\mu}_{x, i}$ and $\ddot{\mu}_{x, i}$ are orthogonal to each other, bearing however in mind that $c_{x, i}$ is minimized if $\dot{\mu}_{x, i} \perp \ddot{\mu}_{x, i}$. Note that $\left\langle\mathbb{1}, \dot{\mu}_{x, i}\right\rangle=0$ for the constant function $\mathbf{1}(w) \equiv 1$, since $<\mathbf{1}, \mu_{x}>\equiv 1$.

We write $\mu_{x}^{\prime}=\left(c_{x}, \dot{\mu}_{x}, \ddot{\mu}_{x}\right)$ to denote the situation that

$$
c_{x}=\left(c_{x, 1}, \ldots, c_{x, d}\right), \dot{\mu}_{x}=\left(\dot{\mu}_{x, 1}, \ldots, \dot{\mu}_{x, d}\right), \ddot{\mu}_{x}=\left(\ddot{\mu}_{x, 1}, \ldots, \ddot{\mu}_{x, d}\right)
$$

is the derivative of $x \mapsto \mu_{x}$ at x in the sense of Definition ??.

Source: Optimization of Simulated Discrete-Event-Processes, Seminar Notes.

1996: The Opus Magnum

1996: The Opus Magnum

OPTIMIZATION OF STOCHASTIC MODELS The inherface Between Simulation and Oplimizition

Oasrg Ch Phug

Georg Pflug: Optimization of Stochastic Models. The Interface between Simulation and Optimization. Kluwer, Dordrecht, 1996.

The Years 1996 to 2011

A Flourishing Theory

- The theory for weak differentiation for Markov chains has been further developed (mainly by others).
- Efficient algorithms, on-line implementations, and even weak Taylor series extensions of Markov chains have been developed
- A sideline of this research has led to numerical algorithms for approximative computation of Markov chains.

A Flourishing Theory

- The theory for weak differentiation for Markov chains has been further developed (mainly by others).
- Efficient algorithms, on-line implementations, and even weak Taylor series extensions of Markov chains have been developed.
- A sideline of this research has led to numerical algorithms for approximative computation of Markov chains.

A Flourishing Theory

- The theory for weak differentiation for Markov chains has been further developed (mainly by others).
- Efficient algorithms, on-line implementations, and even weak Taylor series extensions of Markov chains have been developed.
- A sideline of this research has led to numerical algorithms for approximative computation of Markov chains.

A Flourishing Theory

- The theory for weak differentiation for Markov chains has been further developed (mainly by others).
- Efficient algorithms, on-line implementations, and even weak Taylor series extensions of Markov chains have been developed.
- A sideline of this research has led to numerical algorithms for approximative computation of Markov chains.

Here is what the book states on the product rule of weak differentiation:

3.28 Remark. The weak derivative obeys the following rules:

1. Convex combinations. If $x \mapsto \mu_{x}$ and $x \mapsto \nu_{x}$ are weakly differentiable with derivative $\left(c_{x}, \dot{\mu}_{x}, \ddot{\mu}_{x}\right)$ resp. $\left(d_{x}, \dot{\nu}_{x}, \ddot{\nu}_{x}\right)$, then $x \mapsto \alpha \mu_{x}+(1-\alpha) \nu_{x}$ is weakly differentiable with derivative

$$
\left(\alpha c_{x}+(1-\alpha) d_{x}, \frac{\alpha c_{x} \dot{\mu}_{x}+(1-\alpha) d_{x} \dot{\nu}_{x}}{\alpha c_{x}+(1-\alpha) d_{x}}, \frac{\alpha c_{x} \ddot{\mu}_{x}+(1-\alpha) d_{x} \ddot{\nu}_{x}}{\alpha c_{x}+(1-\alpha) d_{x}}\right) .
$$

(Notice that $\alpha \dot{\mu}_{x}+(1-\alpha) \dot{\nu}_{x}$ is in general not orthogonal to $\alpha \ddot{\mu}_{x}+(1-\alpha) \dot{\nu}_{x}$) even if $\dot{\mu}_{x} \perp \ddot{\mu}_{x}$ and $\dot{\nu}_{x} \perp \ddot{\nu}_{x}$).
2. Convolutions. Under the same assumptions $x \mapsto \mu_{x} * \nu_{x}$ (the convolution) is weakly differentiable with derivative

$$
\left(c_{x}+d_{x}, \alpha_{x} \dot{\mu}_{x} * \nu_{x}+\beta_{x} \mu_{x} * \dot{\nu}_{x}, \alpha_{x} \ddot{\mu}_{x} * \nu_{x}+\beta_{x} \mu_{x} * \ddot{\nu}_{x}\right),
$$

where $\alpha_{x}=\frac{c_{x}}{c_{x}+d_{x}}$ and $\beta_{x}=\frac{d_{x}}{c_{x}+d_{x}}$.
3. Transformations. Let S be a continuous mapping $S: R \rightarrow R^{\prime}$, where f? is some metric space and let μ^{s} denote the image measure

$$
\mu_{x}^{S}(A):=\mu_{x}\left(S^{-1}(A)\right),
$$

If $x \mapsto \mu_{x}$ is weakly differentiable, then $x \mapsto \mu_{x}^{S}$ is also weakly differertiable with derivative ($c_{x}, \dot{\mu}_{x}^{S}, \ddot{\mu}_{x}^{S}$).

The Decisive Answer in 2010

Let μ_{θ} and ν_{θ} be two measures on some measurable space (S, S).
Let $\|\cdot\|_{v}$ denote the weighted supremum norm with v a mapping that is absolutely integrable with respect to μ_{θ} and ν_{θ}, for $\theta \in \Theta$. Product spaces are equipped with the product norm.
Theorem
Let \mathcal{D} be a set of measurable mappings from S on \mathbb{R}. If

- μ_{θ} and ν_{θ} are D-differentiable,
- $\left(\mathcal{D},\left\|_{\cdot}\right\|_{v}\right)$ is a Banach space, then

$$
\left(\mu_{\theta} \times \nu_{\theta}\right)^{\prime}=\mu_{\theta}^{\prime} \times \nu_{\theta}+\mu_{\theta} \times \nu_{\theta}^{\prime} .
$$

Remark 1: Let \mathcal{D} be the set of continuous mappings and $v \equiv 1$, then the product rule for C_{b}-differentiability follows from the above result.

Remark 2: If $\left(\mathcal{D},\|\cdot\|_{v}\right)$ is a Banach space, then \mathcal{D}-differentiability of μ_{θ} implies $\|\cdot\|_{v}$-Lipschitz continuity of μ_{θ}.

The Decisive Answer in 2010

Let μ_{θ} and ν_{θ} be two measures on some measurable space $(\mathcal{S}, \mathcal{S})$.
Let $\|\cdot\|_{v}$ denote the weighted supremum norm with v a mapping that is absolutely integrable with respect to μ_{θ} and ν_{θ}, for $\theta \in \Theta$. Product spaces are equipped with the product norm.

The Decisive Answer in 2010

Let μ_{θ} and ν_{θ} be two measures on some measurable space $(\mathcal{S}, \mathcal{S})$.
Let $\|\cdot\|_{v}$ denote the weighted supremum norm with v a mapping that is absolutely integrable with respect to μ_{θ} and ν_{θ}, for $\theta \in \Theta$. Product spaces are equipped with the product norm.
Theorem
Let \mathcal{D} be a set of measurable mappings from S on \mathbb{R}. If

- μ_{θ} and ν_{θ} are \mathcal{D}-differentiable,
- $\left(\mathcal{D},\|\cdot\|_{v}\right)$ is a Banach space, then

$$
\left(\mu_{\theta} \times \nu_{\theta}\right)^{\prime}=\mu_{\theta}^{\prime} \times \nu_{\theta}+\mu_{\theta} \times \nu_{\theta}^{\prime}
$$

Remark 1: Let \mathcal{D} be the set of continuous mappings and $v \equiv 1$, then the product rule for C_{b}-differentiability follows from the above result. Remark 2: If ($\mathcal{D},\|\cdot\|_{\nu}$) is a Banach space, then \mathcal{D}-differentiability of μ_{θ} implies

The Decisive Answer in 2010

Let μ_{θ} and ν_{θ} be two measures on some measurable space $(\mathcal{S}, \mathcal{S})$.
Let $\|\cdot\|_{v}$ denote the weighted supremum norm with v a mapping that is absolutely integrable with respect to μ_{θ} and ν_{θ}, for $\theta \in \Theta$. Product spaces are equipped with the product norm.
Theorem
Let \mathcal{D} be a set of measurable mappings from S on \mathbb{R}. If

- μ_{θ} and ν_{θ} are \mathcal{D}-differentiable,
- $\left(\mathcal{D},\|\cdot\|_{v}\right)$ is a Banach space, then

$$
\left(\mu_{\theta} \times \nu_{\theta}\right)^{\prime}=\mu_{\theta}^{\prime} \times \nu_{\theta}+\mu_{\theta} \times \nu_{\theta}^{\prime} .
$$

Remark 1: Let \mathcal{D} be the set of continuous mappings and $v \equiv 1$, then the product rule for C_{b}-differentiability follows from the above result.

The Decisive Answer in 2010

Let μ_{θ} and ν_{θ} be two measures on some measurable space $(\mathcal{S}, \mathcal{S})$.
Let $\|\cdot\|_{v}$ denote the weighted supremum norm with v a mapping that is absolutely integrable with respect to μ_{θ} and ν_{θ}, for $\theta \in \Theta$. Product spaces are equipped with the product norm.

Theorem

Let \mathcal{D} be a set of measurable mappings from S on \mathbb{R}. If

- μ_{θ} and ν_{θ} are \mathcal{D}-differentiable,
- $\left(\mathcal{D},\|\cdot\|_{v}\right)$ is a Banach space, then

$$
\left(\mu_{\theta} \times \nu_{\theta}\right)^{\prime}=\mu_{\theta}^{\prime} \times \nu_{\theta}+\mu_{\theta} \times \nu_{\theta}^{\prime}
$$

Remark 1: Let \mathcal{D} be the set of continuous mappings and $v \equiv 1$, then the product rule for C_{b}-differentiability follows from the above result.

Remark 2: If $\left(\mathcal{D},\|\cdot\|_{v}\right)$ is a Banach space, then \mathcal{D}-differentiability of μ_{θ} implies $\|\cdot\|_{v}$-Lipschitz continuity of μ_{θ}.

The Future of Weak Derivatives

- Applications to the generator of continuous time Markov chains
- Applications to inhomogeneous Markov chains
- Further development of numerical approximations by means of Taylor polynomials

The Future of Weak Derivatives

- Applications to the generator of continuous time Markov chains
- Applications to inhomogeneous Markov chains
- Further development of numerical approximations by means of Taylor polynomials

The Future of Weak Derivatives

- Applications to the generator of continuous time Markov chains
- Applications to inhomogeneous Markov chains
- Further development of numerical approximations by means of Taylor polynomials

The Future of Weak Derivatives

- Applications to the generator of continuous time Markov chains
- Applications to inhomogeneous Markov chains
- Further development of numerical approximations by means of Taylor polynomials

Thank You!

Georg wordt 60 jaar, lang zal hij leven in de gloria!

Van harte gefeliciteerd!

