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1987, the Beginning



1987: The ”First” Definition

Source: Lecture Notes in Control and Information Science, IIASA Conference, Sopron Hungary, August 3-7, 1987.



Properties

Source: Lecture Notes in Control and Information Science, IIASA Conference, Sopron Hungary, August 3-7, 1987.



Weak Derivatives in a Nutshell



The Formal Set-Up

Let (S,S) be a measurable space and let (µθ : θ ∈ Θ) be a family of
measures on (S,S), where Θ = (a,b) ⊂ R.

Let D be some set of measurable real-valued mappings defined on S.

Definition
We call µ′θ the D-derivative of µθ if

∀g ∈ D :
d
dθ

∫
g(s)µθ(ds) =

∫
g(s)µ′θ(ds).

If we take D = Cb, the set of bounded continuous mappings, then the
above definition recovers Georg’s early definition from 1987.
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The Triple Representation

Let µθ be a D-differentiable probability measure, with Cb ⊂ D, then
probability measures µ+

θ and µ−θ and a finite constant cθ exist such
that for all g ∈ D:

d
dθ

∫
g(s)µθ(ds) = cθ

(∫
g(s)µ+

θ (ds)−
∫

g(s)µ−θ (ds)

)
.

I Derivatives can be estimated/computed by means of differences
of stochastic experiments.

I This concept has been successfully applied for stochastic
optimization in operations research.
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Example, I

First, lets have a look at a probability measure µθ that has a nice
density.
Let µθ be a measure on R with Lebesgue density fθ.

If fθ(x) is differentiable with respect to θ for x ∈ R, then

d
dθ

∫
g(x)µθ(dx) =

d
dθ

∫
g(x)fθ(x)dx =

∫
g(x)f ′θ(x)dx ,

provided interchanging differentiation and integration is allowed for g.
Now separating the positive and negative part of f ′θ yields∫

g(x)f ′θ(x)dx =

∫
g(x) max(f ′θ(x),0)dx −

∫
g(x) max(−f ′θ(x),0)dx.
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Example, II

In a concrete situation easier to use representations can be found.

Let fθ be the density of the exponential distribution with rate θ and let
hθ be the density of the Erlang-2-distribution with parameter θ, then∫

g(x)f ′θ(x)dx =
1
θ

(∫
g(x)fθ(x)dx −

∫
g(x)hθ(x)dx

)
for all g(x) bounded by a polynomial in x (which is a choice for D).

In shorthand notation:

Exponential(θ)′ =

(
1
θ
,Exponential(θ),Erlang(2, θ)

)
.

So, one part of the derivative is already given by the nominal
experiment.
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Example, III

Let µθ denote the uniform distribution on [0, θ].

Then it holds for all g ∈ Cb that

d
dθ

(
1
θ

∫ θ

0
g(x)dx

)
=

1
θ

(∫ θ

0
g(x)δθ(dx)− 1

θ

∫ θ

0
g(x)dx

)
,

with δθ(·) denoting the Dirac measure in θ. In shorthand notation:

Uniform(θ)′ =

(
1
θ
,Dirac(θ),Uniform(θ)

)
.

So, again one part of the derivative is already given by the nominal
experiment.
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Questions Raised

I What is the added value of weak differentiability?

I What is the best choice of D?

Let’s go back to 1987. Did Georg address these questions?

Not really, instead he worked on something bigger: the extension to
Markov chains.
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The Years 1990 to 1996



1990: XV. Symposium on OR

Georg gave a lecture at the XV. Symposium on Operations Research
(1990, Vienna) on his breakthrough result for Markov chains:

π′θ = πθ

∞∑
n=0

P ′θPn
θ .

Published as: On-Line Optimization of Simulated Markovian Processes
Mathematics of Operations Research, 1990, pp. 381-395

This was the first time that I heard of weak derivatives and my interest
in the topic brought me to the event on the next slide...
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1992: The Raach Workshop

Source: Optimization of Simulated Discrete-Event-Processes,
Seminar Notes.



1996: The Opus Magnum



1996: The Opus Magnum

Georg Pflug: Optimization of Stochastic Models. The Interface between
Simulation and Optimization. Kluwer, Dordrecht, 1996.



The Years 1996 to 2011



A Flourishing Theory

I The theory for weak differentiation for Markov chains has been
further developed (mainly by others).

I Efficient algorithms, on-line implementations, and even weak
Taylor series extensions of Markov chains have been developed.

I A sideline of this research has led to numerical algorithms for
approximative computation of Markov chains.
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...and the Product Rule?

Here is what the book states on the product rule of weak
differentiation:



The Decisive Answer in 2010

Let µθ and νθ be two measures on some measurable space (S,S).

Let || · ||v denote the weighted supremum norm with v a mapping that
is absolutely integrable with respect to µθ and νθ, for θ ∈ Θ. Product
spaces are equipped with the product norm.

Theorem
Let D be a set of measurable mappings from S on R. If

I µθ and νθ are D-differentiable,
I (D, || · ||v ) is a Banach space, then

(µθ × νθ)′ = µ′θ × νθ + µθ × ν′θ .

Remark 1: Let D be the set of continuous mappings and v ≡ 1, then
the product rule for Cb-differentiability follows from the above result.

Remark 2: If (D, || · ||v ) is a Banach space, then D-differentiability of
µθ implies || · ||v -Lipschitz continuity of µθ.

Source: H. and Leahu, Weak Differentiability of Finite Product Measures, Mathematics of Operations Research, 2010.
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The Future of Weak Derivatives

I Applications to the generator of continuous time Markov chains

I Applications to inhomogeneous Markov chains

I Further development of numerical approximations by means of
Taylor polynomials
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Thank You!



Georg wordt 60 jaar,
lang zal hij leven in de gloria!

Van harte gefeliciteerd!
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