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1987, the Beginning



1987: The "First” Definition o e

254

Definition 1. A function x — Hyr mapping an open subset of Rk into y is
called weakly differentiable at the point x, if there 1s a k-vektor of

signed finite measures .u;‘ = tp;{n. ,_u;(k:!; y'u} € M such that
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for all g = C(S) as h - 0. Here o(-) may depend on g.
The derivative pb; may be represented as

. (1) _ () (2 -tk -tk

B = [cllpi l—y;”). czl.ux “H, )""""'kl‘"x -y: ’J]
where _l}i”, j];ﬂ e . We do not require that f.r)i” and ,Liij} are orthogonal
of each other, bearing however in mind that LA is minimized if {J‘El} 1 j}f‘l).

Note that <g,p;(h'}

> = 0 for the constant function g = 1, since ‘g = 1.

Source: Lecture Notes in Control and Information Science, IIASA Conference, Sopron Hungary, August 3-7, 1987.



Properties et amsian.

DIt x— oy oand x — u is differentiable, with derivative (e, f, ji,)

resp. (d, l'»x. ;x)' then x —s a.pxl-u-q)vx is differentiable with
derivative

acpr H{1-aldV,  acy +(1-a)di)
act{l-a)d, - L L3 ﬂ

actil-ald  act(l-ad |

(Note that a,r}xi-[l-a) l}x is in general not orthogonal to q}}xﬂl—a}ﬂx).
2) Under the same assumptions x — Hx*"x {convolution) is differentiable

with derivative
(etd, % ""'xtyx* % px";x' c—ff i';xtuf % ""'x,';';xJ
3 If T is a measurable transformation which maps Hy onta pI i.e.
) z= g7l

then X — p'; is differentiable with derivative {c,ﬁi,l}:}

Source: Lecture Notes in Control and Information Science, IIASA Conference, Sopron Hungary, August 3-7, 1987.
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The Formal Set-Up gxf

Let (S, S) be a measurable space and let (i : 6 € ©) be a family of
measures on (S, S), where © = (a,b) C R.

Let D be some set of measurable real-valued mappings defined on S.

Definition
We call 11, the D-derivative of g if

vgeD: = [ o(solas) = [ a(s)ui(as)

If we take D = Cy, the set of bounded continuous mappings, then the
above definition recovers Georg’s early definition from 1987.
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The Triple Representation

Let up be a D-differentiable probability measure, with Cp, C D, then
probability measures ;7 and p, and a finite constant ¢, exist such
that for all g € D:

d _
3 [ atsmas) = e [ atowiids) ~ [ gohs es)).
» Derivatives can be estimated/computed by means of differences
of stochastic experiments.

» This concept has been successfully applied for stochastic
optimization in operations research.
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Example, |

First, lets have a look at a probability measure py that has a nice
density.

Let up be a measure on R with Lebesgue density f,.

If f5(x) is differentiable with respect to 6 for x € R, then

5 [ atoma@) = 5 [atontaax = [ gfieoa.

provided interchanging differentiation and integration is allowed for g.
Now separating the positive and negative part of f; yields

/ 90 (x)dx = / 9(x) max(f;(x), 0)dx — / 9(x) max(—fj(x), 0)dx
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In a concrete situation easier to use representations can be found.

Let fy be the density of the exponential distribution with rate 6 and let
hy be the density of the Erlang-2-distribution with parameter 6, then

/g x)fj(x (/g x)fo(x)dx — /g X)hg(x dx>
for all g(x) bounded by a polynomial in x (which is a choice for D).
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Example, Il g‘m

In a concrete situation easier to use representations can be found.

Let fy be the density of the exponential distribution with rate 6 and let
hy be the density of the Erlang-2-distribution with parameter 6, then

/g x)fj(x (/g x)fo(x)dx — /g X)hg(x dx>
for all g(x) bounded by a polynomial in x (which is a choice for D).
In shorthand notation:
Exponential(#)" = (;,Exponential(@),Erlang(Z, 9)> .

So, one part of the derivative is already given by the nominal
experiment.
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Example, Il

Let 119 denote the uniform distribution on [0, 6].

Then it holds for all g € Cp that

g (; / Q(x)dx> -1 < | oo~ [ g(x)dx) ,

with dy(-) denoting the Dirac measure in 6. In shorthand notation:

1
Uniform(6) = (Q,Dirac(G),Uniform(9)> .

So, again one part of the derivative is already given by the nominal
experiment.
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Questions Raised gf

» What is the added value of weak differentiability ?

» What is the best choice of D?

Let’s go back to 1987. Did Georg address these questions?

Not really, instead he worked on something bigger: the extension to
Markov chains.
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Georg gave a lecture at the XV. Symposium on Operations Research
(1990, Vienna) on his breakthrough result for Markov chains:
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Published as: On-Line Optimization of Simulated Markovian Processes
Mathematics of Operations Research, 1990, pp. 381-395



1990: XV. Symposium on OR e s

Georg gave a lecture at the XV. Symposium on Operations Research
(1990, Vienna) on his breakthrough result for Markov chains:

o0
Ty = Tp E P,Py.

n=0

Published as: On-Line Optimization of Simulated Markovian Processes
Mathematics of Operations Research, 1990, pp. 381-395

This was the first time that | heard of weak derivatives and my interest
in the topic brought me to the event on the next slide...
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1992: The Raach Workshop N

3.11 Definition. A function = ++ ., mapping an open subset of IR? into P is called weakly differ-

entiable at the point z, if there is a d-vector of signed finite measures pf, 1= (P‘;:,lﬁ ey F;,d) i €
M such that 4

5 ,
s~ |< Hopegs > = < Hopa > =3 s < Hoph i >| =0, (39

i=1

as s — 0 for all H# € Cy(R), where s = (51,...,54) € RY. As in (77), the derivative u/ may be
represented as

py = (€2, (o = fio,1) s 0,2 (Boo2 = fiz,2) 1+ ooy Coyd (fho,d — fiz,a)) (3.9)

where fiz i, jiz; € P. We do not require that ji,; and ji;; are orthogonal to each other, bearing
however in mind that ¢, ; is minimized if iz L jiz 5. Note that < 1,5z >= 0 for the constant
function Ww) =1, since < Ly >=1.

We write ptl, = (cz, fiz, fiz) to denote the situation that
Ce = (Ca1ye vy Cayd) s e = (Bz1ye ooy M) ylbe = (fiz,1s ey fic,a)

is the derivative of # — p, at x in the sense of Definition 77.

Source: Optimization of Simulated Discrete-Event-Processes,
Seminar Notes.



1996: The Opus Magnum




1996: The Opus Magnum gsf

OPTIMIZATION OF
STOCHASTIC MODELS
idiliin

Th Itacn
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Tecry Oh Fiug
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Georg Pflug: Optimization of Stochastic Models. The Interface between
Simulation and Optimization. Kluwer, Dordrecht, 1996.
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A Flourishing Theory gxf

» The theory for weak differentiation for Markov chains has been
further developed (mainly by others).

» Efficient algorithms, on-line implementations, and even weak
Taylor series extensions of Markov chains have been developed.

» A sideline of this research has led to numerical algorithms for
approximative computation of Markov chains.
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.and the Product Rule? o amsoton

Here is what the book states on the product rule of weak
differentiation:

3.28 Remark. The weak derivative obeys the following rules:

1. Convex combinations. If # v+ y; and & — v, are weakly differenti:
with derivative (¢z, jig, fiz;) Tesp. (dz, Uz, Vs), then & — opp + (1 —
is weakly differentiable with derivative

Qlpfiz + (1 — a)deble 0Czjiz + (1 —a)d. b,
acr+(l—a)d, ' acy+(1-a)ds

(au +(1-e)ds,

(Notice that cvfiz+({1—a)ir is in general not orthogonal to ajiz+ (l
even if fip L jiz and 2z L 1),

[

. Convolutions. Under the same assumptions # — g1, 1/ (the convol
is weakly differentiable with derivative

(¢ + do, Qafiz ¥ Uz + Bapto % Vg, Gfis * Vo + Battz * Uz

= sl
whe:ea_,_?%and,ﬂ,_m;.

3. Transformations. Let § be a contmuuus mapping S : R —+ R/, wl
is some metric space and let ¥ denote the image measure

3 (A) = e (S7(A)),

If @+ g is weakly differentiable, then = = pS is also weackly
tiable with derivative (cs, 25, fi5).
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The Decisive Answer in 2010 P

Let 1y and vy be two measures on some measurable space (S, S).

Let || - ||v denote the weighted supremum norm with v a mapping that
is absolutely integrable with respect to gy and vy, for 8 € ©. Product
spaces are equipped with the product norm.

Theorem
Let D be a set of measurable mappings from S on R. If

> 19 and vy are D-differentiable,
» (D,|| -|v) is a Banach space, then
(1o x v9)' = py X vo + g X v .
Remark 1: Let D be the set of continuous mappings and v = 1, then
the product rule for C,-differentiability follows from the above result.

Remark 2: If (D, || - ||v) is a Banach space, then D-differentiability of
e implies || - ||y-Lipschitz continuity of .

Source: H. and Leahu, Weak Differentiability of Finite Product Measures, Mathematics of Operations Research, 2010.
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The Future of Weak Derivatives gf

» Applications to the generator of continuous time Markov chains

» Applications to inhomogeneous Markov chains

» Further development of numerical approximations by means of
Taylor polynomials



Thank You!



Georg wordt 60 jaar,
lang zal hij leven in de gloria!

Van harte gefeliciteerd!
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