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Stochastic optimization of simulation
models

 |mportant theme of Professor Pflug research

« Shows his vision how to select a difficult theme that Is
destined to have a lasting and increasing significance
for theory and practice of optimization

» He has obtained some of the most penetrating and
fundamental results that continue to shape the field

» He has produced one of the most authoritative texts:

Georg Ch. Pflug. Optimization of Stochastic Models. The

Interface Between Simulation and Optimization, Kluwer,
Boston, 1996
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Stochastic optimization of simulation

models
« Why it will be more and more useful:

— Many real systems that operate in conditions of uncertainty can not be
described by a relatively limited collection of linear (and even nonlinear)
equations without making serious tradeoffs between computability and
adequacy

— Simulation is a natural paradigm in such situations

— Decision policies are naturally modelled as functions of relatively limited
number of parameters of state of the model (hundreds and not billions)

— BUT, computational requirements are serious, brute force does not work,
Intelligent algorithms are needed. With right algoritms computational
power is already here, 107 iterations are feasible.

— Examples: ICT, production, transportation, supply chain
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Contents

» Two examples:

— Differentiated service pricing on social network
— Transportation between supply/demand nodes with inventories

— Common feature: complex networks where small cases are solvable
with normative approach, but optimization of simulation model allow to

arrive much, much further

 Numerical method: stochastic inertial finite

differences
— Awvoids different pitfalls that often happen along this road

« Some Insights from numerical experiments
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Example 1: Differentiated service pricing on
soclal network

 Service provider who maximizes his profit
 Population of customers connected in social network

Service
provider

yrno  O0CIAl network: nodes with links that randomly change in time
3)
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Example 2: Transportation between
supply/demand nodes with inventories

 Set of nodes connected with links (roads, waterways ...) with supply/demand
(or both) for a collection of items

« Transportation (trucks, ships) operates on links that takes items in excess and
bring them where they are lacking

« Transportation time, finite inventories, costs of transportation, inventory,
backlog

 Decisions taken before one step before inventory is known: where to take
and where to bring

m—

Transportation of empty containers
between ports

|
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Differentiated service pricing on social
network

« How to price a service offered to participants in
a soclal network in order to maximize profit?

 Uniform price? Or maybe differentiated price?
Offer discounts to well connected participants?
If yes, how much?

We develop model and integrated simulation and
optimization tool that answers these questions
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Model of social network

e Set of nodes 1=1:N
e Discretetime=1,...,T,...

« AY(w) — Incidence process: a stationary Markov process with
values in the space of NxN matrices; the element a'; with value
between 0 and 1 describes the ’strength” of connection between
nodes | and j.

* Bj(w) = {jlaj;(w) >0} the set of neighbors of node i at time t

. Serwce provider (SP) provides service described by set of
parameters X (subscription and unit usage prices for different
user categories, QoS, SLA, ...) decided by SP. SP can monitor
usage and structure of the network (possibly with errors).
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Model of social network, continued

« Customers decide about subscription y;t (O or 1) and volume of
usage z;'.

 Subscription y;t of user I at time t+1 depend on
— Current subscription decision y;!

— Service parameters x

— Knowledge about the service usage among network neighbors from

B,'(w): the network effect function v;'(w)
vi(w) = v; ((45.25) 7 € Bi(w))
— Random event @
— Thus, subscription process is defined as follows:
g =yt (g2t ol (), w)
and more specifically by transition probabilities
Plyitt =k | yi =1} =p)i, v =pii (2" v} (w),w), k,1=0,1
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Model of social network, continued

« The volume of traffic z;' of customer 1 at time t also depends on
the service parameters and network effects:
b { 20 (2% v (w),w) >0 if yi =1

0 otherwise
» Revenue of SP from user i is defined by subscription and
traffic: ry =r; (2%, Y, 2))
— Example: x=(x;;,X;,) where x;, is the subscription flat rate and x;, is unit
traffic rate for user i, then
+ { Ty + Toi2) if yi =1

0 otherwise

« Total revenue during the time horizon 1, ...,T:

ZRt z,w). Ri(x

(2,97, =

”M’
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Revenue maximization on social network

 Decision problem od service provider:
— Find service parameters x that maximize F(x)
, , |
F(z)= lm TR (z,w)

T—oc

under constraints g; < X where X is admissible set.
This is very nontrivial optimization problem.

Difficulties: randomness and transient behavior, precise values of objective
function can be obtained only after long simulation process
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Possible optimization strategies: many pitfalls

here

Sample path optimization — often advocated but will fail here

1.
2.

NTNU

Select very long time horizon T

Generate all the random numbers w* necessary for simulation during
this time horizon

Use off-shelf nonlinear optimization software to solve the problem

| .
max — R’ (z,w*)
Advantage: no effort is needed for implementation and tuning of

optimization algorithm

Drawback: will not work due to highly irregular behavior of the sample
path objective
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Example A

* Fixed constant incidence matix
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« Network effect function is between 0 and 1; the more users from
the neighborhood of user I are subscribed the closest it isto 1

» The single service parameter is its price x per unit of traffic, the

same for all users
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Example A, continued

Subscription/unsubscription probabilities are deterministic
functions of price and network effect

] ) min {;I-', Pi max} . .
- (1 _ 1 ) (b + (1— bs)vf) s p20 = 1 — p21,

Pi max

10 min {x,pi max} - Nt 11 - 10
Pti — (I —q;)v;. Py = 1 — p3;

Pimax

where p; max IS the maximal price the user i is willing to accept and b;, g; are
some parameters between 0 and 1

The traffic function
¢ { (1 N gcpn}) (c1i + c2iv;) if y; =1

0 otherwise

 Revenue r;? — ot
NTNU
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Example A, continued

« Sample path objective functions for T=20 and T=10000

sample path objective function

sample path objective function
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* lrregular behavior persists irrespective of the length of the time
horizon, local maxima are just about everywhere. Off-shelf
optimization codes will fail

NTNU
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Answer: stochastic (quasi)gradient methods

(SQG)

Method for solution of stochastic optimization problems of the

type nax E
max B f (z, w)

Iterative process  2°T! = 7wy (2% + p.&,)
Projection operator

X., . — i
mx (y) € X, |lmx (y) -yl = min

&, 1s an estimate of the gradient of the objective function:
E (55 ot T") = F, (2°) + as
p; IS a stepsize:

oo o0 | o0
ZpS = o0, pr < 00, ZpS |as|| < oo a.s.
s=0 s=0 s=0

weny | Otochastic approximation: Kiefer & Wolfowitz
@ Professor Pflug has made important contributon here too

z—y
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SQG, continued

« Important difference: transient behavior, we can observe only
estimate with the property

E (& | a',...,2%) = F; (2°) + a,
« Convergence theorem:
— Functions F5(x) are convex and bounded on open set
— Set X is convex and compact
— P IS nonnegative and

Zp‘, — Q. Zp% < o0, pr, |as|] < o0 a.s. (HF; (z°) — & — as||* | 335) < OC

s=0 s=0
— Nonstationarity condition:

sup,e x || F*F (2) — F*(2)|
Ps

Then max F*(x) — F* (2®) — 0 with probability 1

— 0 as s — ¢
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Lot of work Is needed to adapt this method to

optimization of simulation models

 Transient behavior
 Integration issues between simulation and optimization
« Obvious strategies do not work, for example brute force finite differences

NTNU

At each step:

1. Simulate the system from some initial state for current values of service parameters x*
during time horizon T, obtain the observation of objective u,=RT(x5,w?).

2. Do the same for the values of x; that differ from x® in that the i-th variable is incremented
by the value ¢, of finite differences, obtain the estimate u,.. Do it for all the service
parameters.

3. Compute the i-th component of the estimate of the gradient &5 =(u;, -Ug)/ o,
4. Perform one step of the SQG method, obtain xs*1
5. Go to step 1.

This takes forever because T should be sufficiently large to get rid of the

transient effects.
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Integrated simulation and optimization

* Intertwine tightly simulation and optimization: change service
parameters according to SQG method every simulation step

« Perform n+1 parallel simulations for the current point and n
shifts with the finite difference step for each of the n parameters
using common random numbers

 Utilize previous information in the estimation of function values
necessary for the finite differences

« This has an effect of filtering out both noise and transient effects

 Since optimization steps are so lightweight they can be
performed by millions in a few minutes on laptop

NTNU
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Integrated simulation and optimization, continued
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Optimal values of service parameters are obtained after the end of
single simulation run consisting of n+1 simulation threads
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Full description of the algorithm

1. Initialization. Select the following parameters of the algorithm:

1" - the number of time periods to perform simulation and optimization:

p: > 0 - the sequence of step sizes for updating of the decision variables xt .

v: - the sequence of multipliers for estimation of the objective function F(x) from (5).

0: - the sequence of moving average multipliers for estimation of the solution of problem
(5) from the iteration noints

OE - the sequence of finite difference steps for approximating of the gradient of objective
function. k=1 :n.

xl - the starting point for the optimization algorithm.

5‘} — St _ the initial state for the simulation of the social network, k =0 : n.

Select the initial approximation ' = x' to the solution of the problem (5). the initial estimates
u% = uY of the value ofF(:cl) and the initial estimate F! to the optimal value of the problem.

2. Generic step. Suppose that by the start of iteration t = 1.....1" the k+1 stmulation processes
have arrived at the states Si.k = 0 : n, the optimization algorithm has generated the value x* of
decision variables and k + 1 estimation processes obtained the estimates ufc—l for the values of the
objective function F(x) at point x* for k = 0 and points x* + e;gdfs for k=1:n. On iteration t the
states S}, the estimates u-i,_l and point x° are updated as follows.

2a. The observations ™,k = 0 : n of the one period performance measure are obtained (for
example. one period revenue from (4)). The observation v*t is made from the state St using the
values z' of decision variables for k =0 and x* + €0}, for k=1 :n.

2b. The observations w' of random variables w are generated.

2c. The next states SE‘H, k = 0:n of the social network are obtained using the observations wt.
The state SSH is generated starting from the state S§ according to the network description (1)-(3)
and using the value x* of decision variables and the states Si_ﬂ.k = 1 : n are generated starting
from the states S’f and using the values x* + eko"z,_ of decision variables.
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Full description of the algorithm,
continued

2d. The estimates ul, of the objective function F(xz) at points x* for k = 0 and " + e,0! for

k =1:n are computed using the observations r’*:

’U,i, — (l — ﬁat) ui_l —+ '”Jﬂ’kt. E=0:n

2e. The finite difference approximation & to the gradient of function F(z') is computed as
follows:
t t
Uk — %o
Ee = (&t oos Etn) s Etk = et
k
3f The new value xt+1 o_f the decision variables is Comp-u.ted a.s fol lows:

pt

mx (' + peée)

2g. The current approximations to the optimal values of decision variables x and the current
approrimation FtL to the optimal value of the problem are computed as the moving average of the
iteration points as follows:
T = (1 60:) 2" + e’

Ft—’_l — (J. — 93:) Ft + Htfﬁt—’_l
2h. Stop if t =T and take the average of the last 11 values of ' and F? as the final approxi-

mations & and F to the optimal solution of the problem(5) and its optimal value.[]
NTNU
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Tuning of the algorithm on the problem with
known solution

 |f the network has fixed structure the process is described by
Markov chain with 2N states. For small N one can find stationary
probabilities of the chain and find the optimal prices using off-
shelf NLP software. This is used as a benchmark

current estimate of the objective function

3500
3000+
2500+
@
=2
o 2000
c
ie]
S 1500
=
1000
500
—_— gstimate
—aptimal value
0 1 1 | ]
NTNU 0 2 4 6 8 10
iteration number 5
x 10 23
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Study of networks with different structure

Network of type A

Global leader 1 connected with everybody
Local leaders 2 connected with half of the rest and the leader

Ordinary nodes 3 connected only with leaderl and one of the
local leaders 2

NTNU
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Study of networks with different structure,
continued

* Network of type B

» Global leader 1 connected with everybody
« L local leaders 2 connected with M followers and the global leader

« Followers 3 connected with global leader 1 and one of the local
leaders 2

NTNU
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price

Optimal prices, networks with fixed structure

« Differentiation does matter

differentiated and uniform prices, network A

5t HK =g K= K= = K= = = K= MK = = e === m == x

—e—global leader
-+ —local leaders
= M =followers

=8 Lniform price
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revenue

Optimal revenues, networks with fixed structure

« Differentiation does matter, but random errors in connections
can destroy the picture

« 10° differentiated and uniform revenues, network A advantage of differentiated policy over uniform policy
3r 18
—e—network A, fixed
16H —=—network B, fixed
2 5L ——network A, 0.05 flips
£ 144 —r—network A, 0.1 flips
3
2+ 2 12t
£
g——a
% 10k _E__,-—El—_E'_ BB
]
1.5r ‘g
> 8f
=}
1]
s S 6f
9
o 4t
0.5t
—e=—differentiated price ol —
=& uniform price —
0 1 1 ! 1 ! 0 L . eIV 3% ___§
0 20 40 60 80 100 0 20 40 60 80 100
number of nodes number of nodes
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Optimal revenues, networks with fixed structure

 Differentiation does matter, errors in transition probabilities do
not matter much

revenue per node for differentiated and uniform policies revenue per node for differentiated and uniform policies, network A
2851
280l 280r
2751
270r
270r
o 2697 —e—differentiated pricing. network A o 260F —e—differentiated, fixed transitions
% 260 == Lniform pricing. network A g === LNniform, fixed transitions
> —t—differentiated pricing, network B > —t—differentiated, random transitions
= 255} —=—uniform pricing, network B = 250 —=—uniform, random transitions
2501
Bb—a—f—a—— 240r
245¢ 8. * -
=
-
240t . 5 230l f—afe— e 0
235 : : : ! : ! ! ! ! !
20 40 60 80 100 0 20 40 60 80 100
number of nodes number of nodes
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Optimal prices, networks with randomly changing
structure

« |If connections flip randomly the prices converge

differentiated and uniform prices, network A with 0.1 flips

3.5
3r - :
2.5 a4
9 2f E*a% ,./
5 E\&E—E"E
1.5F
1 -
—a—global leader
05 -+ —local leaders
= =followers
=@==uniform price
O 1 1 1 I I
0 20 40 60 80 100
number of nodes
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differentiated and uniform prices, network A with 0.05 flips
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Optimal revenues, networks with randomly
changing structure

« |If connections flip randomly the revenues grow due to increased
network effects

revenue per node for differentiated pricing. network A revenue per node for uniform pricing, network A
-—t
310t " 3101 e
,,+f'"'+++— a /‘" -
300} 300 P E__,..---"""
290+ 290 /E/E'da
© 280r $ 280 —e=—fixed connections
= =
S ] —=—0.05 connection flip probability
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¥
2601 260¢ ff
4+
250+ . _ 250~
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0 20 40 60 80 100 0 20 40 60 80 100
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Example 2: Transportation between
supply/demand nodes with inventories

 Set of nodes connected with links (roads, waterways ...) with supply/demand
(or both) for a collection of items

« Transportation (trucks, ships) operates on links that takes items in excess and
bring them where they are lacking

« Transportation time, finite inventories, costs of transportation, inventory,
backlog

 Decisions taken before one step before inventory is known: where to take
and where to bring

m—

Transportation of empty containers
between ports

|
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Comparison of scenario tree deterministic
equivalent with optimization/simulation

R J K I K
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A small problem due to huge dimension of
deterministic equivalent

3 ports, 1 type of conatiners,1 ship that travels in one day between ports, 7
days, forecasts of demand/supply are known, normal distribution around
forecasts, independent forecast errors

A

<€

Binary tree 7 periods on each of 3 demands, 7 days: 2.1*10° scenarios, 1.7*107 variables,
1.2*107 constraints, CPLEX 12.1, 8 hours of OPL 6.3 time of single core 2.93 GHz, 8 GB
of memory, 23 GB virtual memory allocated

Trinary tree first 4 periods: 5.3*10° scenarios, 1.8*107 variables, 1.1*107 constraints, 34
hours of OPL 6.3 time

What if we use the most powerful cloud available? Trinary tree first 5 periods 1.4*10°

«rScenarios, 3.6*108 variables, 2.2*10° constraints
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optimal value of objective
N

Which tree to choose

Professor Pflug has proposed how to do this optimally

—e—Dbinary tree
—=—simulated binary tree

- * —trinary tree

- ¢ -simulated trinary tree

— = —quadrinary tree

-+ -simulated quadrinary tree
= ==5QG solution

number of branching periods

optimal value of objective

3.9

25

—e—binary tree

| —=—simulated binary tree
\ * trinary tree
¢ simulated trinary tree
i \ x quadrinary tree
o+ + simulated quadrinary tree
- ~— - - -SQG solution

el

0 1 2 3 4 5 6 7
log10 of number of scenarios

Conclusion: binary tree is superior to other trees for the same number of
scenarios
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costs

Comparison for different levels of
uncertainty

5 4
3 X 10 10% 10
—+—deterministic =+ deterministic
——simulated deterministic 9 ——simulated deterministic
2 5l{ —*—binary tree 32768 scenarios ——binary tree 32768 scenarios
——simulated binary tree 32768 scenarios 8| —— simulated binary tree 32768 scenarios
- @ =optimization of simulation model - = @ =optimization of simulation model
2
6,
1]
1.5 § 5t ,/»/’ﬂ
4,
1
3F o
/ ,_er”
-
05 o -:-:-ing__ - o /

0 0.2 0.4 0.6 0.8 1 0.2 04 0.6 0.8 1
ratio standard deviation/mean of demand/supply forecast ratio standard deviation/mean of demand/supply forecast
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Conclusion, part 1

« Optimization of simulation models is important methodology for
solving complex optimization problems under uncertainty with
growing relevance for applications

 Algorithmic development is important

 Contribution of Professor Pflug provides theoretical and
algorithmic underpinning to this methodology

Conclusion, part 2
» See next slide
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