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Electricity Prices

Hourly electricity prices at the European Energy Exchange:
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Electricity Prices

Properties of hourly electricity prices St :

- daily, weekly and yearly seasonalities,
- extreme price spikes,
- strong mean reversion,
- state dependent volatility,
- long-term non-stationarity.

→ complicated stochastic process.
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Electricity Prices

SMaPS-Modell of Burger et al. (2004):
(spot market price simulation model)

ln(St) = f (t ,Lt/vt) + Xt + Yt , t = 0,1,2, . . . .

mit

(Lt)t≥0: load process
f (t , ·), t ≥ 0: (logarithmic) price-load curves
(vt)t≥0: expected availability of power plants
(Xt)t≥0: (stationary) short term process

(calibrated to spot market data)
(Yt)t≥0: (non-stationary) long term process

(calibrated to futures data)

(Lt), (Xt), (Yt) independent.
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Electricity Prices

price-load curves f (t , ·):
- cubic splines fitted to data

short term process Xt :
SARIMA(2,0,1)× (1,0,1)24 time series model

load process Lt = `t + L′t :
`t : deterministic load forecast
(describes the main seasonalities!)
L′t : SARIMA(1,0,1)× (1,0,1)24 time series model

long term process Yt :
- random walk mit drift
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Electricity Prices

Simulation model:

Jan.01,2002 Apr.01,2002 Jul.01,2002
0

50

100

150

E
U

R
/ 

M
W

h

20 simulations of price paths
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Dynamic Optimization Problems

Stochastic dynamic optimization problems in energy
markets

- valuation of gas storage facilities

- valuation of swing options

...
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Example Swing Option

fixed energy amount: A
capacity limit: C
delivery spread over time points t1, . . . , tN .
strike price K
Optimization problem:

VSwing = max
φ

{
N∑

i=1

E∗ [φ(ti) (Sti − K )]

}
(1)

s.t.
N∑

i=1

φ(ti) = A, 0 ≤ φ(ti) ≤ C (i = 1, . . . ,N),

φ(ti) Fti − adapted (i = 1, . . . ,N),

with φ(t) capacity at time t .
Optimal solution??
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Example Swing Option

Assume that S1,S2, ... are independent.
→ Markov decision process, known as
“stochastic sequential assignment problem”:
Let Vt(e,p) optimal expected reward from t on, if energy amount
e is still available and current price is p.
Bellman equations:

Vt(e,p) = max
0≤φ(t)≤C

{φ(t)(p − K ) + EVt+1(e − φ(t),St+1)}

Optimal policy is Swing-strategy of threshold type:

φ(t) =

{
C , if p ≥ kt(e),

0 , else,

for some kt .
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Example Swing Option

Asymptotically optimal for large N:

φ(t) =

{
C , if p ≥ F−1

S (1− α),

0 , else,

where α = A/CN.

Is this still true for more realistic stochastic processes (St)?
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Example Swing Option

Assume that S1,S2, ... is Markovian process with
St+1 = g(St ,Yt+1).
Bellman equation:

Vt(e, st) = max
0≤φ(t)≤C

{φ(t)(st −K ) + E [Vt+1(e−φ(t),St+1)|St = st ]}

Optimal policy is still bang-bang-strategy, i.e. φ(t) ∈ {0,C}.
This holds under very general assumptions.

-> reduction to multiple stopping problem with n stopping times.

Vt(n, zt) = max{zt + E [Vt+1(n − 1,Zt+1)|Zt = zt ],

E [Vt+1(n,Zt+1)|Zt = zt ]}
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Example Swing Option

Optimal policy is not necessarily threshold strategy.
Example: let S1 ∼ U(2,4), S2 = 2S1 − 3 ∼ U(1,5), n = 1
(optimal stopping problem).

Obvious solution: stop in t = 1, if S1 ≤ 3 !!

Optimal policy is of threshold type under the assumption that

‖g(·, y)‖L ≤ 1 for all y .
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Example Swing Option

In general no explicit solution in case of complicated stochastic
process for spot price St .
-> need for good approximations, upper and lower bounds.

Any admissible policy delivers a lower bound. A very simple lower
bound used in practice is given by the ex ante strategy looking
only at the current futures prices.

A very simple upper bound is given ex post by the so called
prophet value.
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Example Swing Option

Better bounds:

Good lower bounds by approximate dynamic programming with
simulation algorithms like least square Monte Carlo.

Good upper bounds by duality theory developped by Rogers
(2002) and Meinshausen and Hambly (2004).

Explanation with example of optimal stopping (n = 1).
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Example Swing Option

Given any stochastic process (Zt , t = 0,1, . . . ,T ) the following
result of Rogers (2002) holds.

Theorem

sup
τ

E(Zτ ) = inf
M∈H0

E [sup
t

(Zt −Mt)]

where H0 is the set of all martingales with M0 = 0.

The infimum is attained for M∗ the martingale from the
Doob-Meyer-decomposition of the Snell envelope

M∗t −M∗t−1 = Vt(Zt)− E [Vt(Zt)|Zt−1].

-> any good policy (approximation Ṽ of the value function)
delivers also a good upper bound via

Mt −Mt−1 = Ṽt(Zt)− E [Ṽt(Zt)|Zt−1].
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Example Swing Option

In case of an ergodic Markov chain (St) a good policy for large N
is given (under a few technical assumptions) by the
assymptotically optimal strategy

φ(t) =

{
C , if p ≥ π−1(1− α),

0 , else,

where α = A/CN and π is the stationary distribution of the
Markov chain.
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Approximate dynamic programming

An approximation Ṽ of the value function can also be obtained via
least square Monte Carlo, suggested by Longstaff and Schwartz
(2001).

Example of a put option with T = 3,K = 1.05, r = 0.02.

Given: 10 simulated paths of a stochastic process St .

Goal: approximation of the value of the option and good
exercising strategy.

We approximate the continuation value E [Ṽt(St)|St−1] via
polynomials of 2. degree (basis functions 1, x , x2).
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Approximate dynamic programming

path t = 0 t = 1 t = 2 t = 3
1 1.00 1.06 1.10 1.27
2 1.00 1.18 1.04 0.99
3 1.00 0.91 0.95 0.94
4 1.00 0.80 0.75 0.90
5 1.00 1.10 1.30 1.38
6 1.00 1.01 1.03 1.15
7 1.00 1.11 1.56 1.44
8 1.00 0.89 0.84 0.90
9 1.00 0.95 0.95 0.96

10 1.00 1.20 1.05 1.07

Table: Simulated paths of the stochastic process.
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Approximate dynamic programming

path t = 1 t = 2 t = 3
1 - - 0.00
2 - - 0.06
3 - - 0.11
4 - - 0.15
5 - - 0.00
6 - - 0.00
7 - - 0.00
8 - - 0.15
9 - - 0.09

10 - - 0.00

Table: Cash Flows Z3 if exercising only at the end.

Ansatz: E [Z3|S2] ≈ a + bS2 + cS2
2
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Approximate dynamic programming

Least squares method delivers the regression:

E(Z3|S2) ≈ −0.9415 + 2.8064 S2 − 1.8033 S2
2 .

Comparing current value (K − S2)+ with the estimated
continuation values gives a (sub)-optimal strategy for t = 2.
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Approximate dynamic programming

Path (K − S2)+ est. cont. value
1 - -
2 0.01 0.0266
3 0.10 0.0970
4 0.30 0.1489
5 - -
6 0.02 0.0359
7 - -
8 0.21 0.1434
9 0.10 0.0970
10 - -

Table: Value of exercising the option in t = 2 and estimated
continuation value.

For path 2 and 6 wait, otherwise exercise in t = 2.
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Approximate dynamic programming

path t = 1 t = 2 t = 3
1 - 0.00 0.00
2 - 0.00 0.06
3 - 0.10 0.00
4 - 0.30 0.00
5 - 0.00 0.00
6 - 0.00 0.00
7 - 0.00 0.00
8 - 0.21 0.00
9 - 0.10 0.00

10 - 0.00 0.00

Table: Cash Flows of exercising in t = 2 or t = 3.
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Approximate dynamic programming

Now regression of the discounted cash flow Z2 in relation to the
current price S1. Least squares method gives:

E(Z2|S1) ≈ 2.0789− 2.9407 S1 + 0.8919 S2
1 .

Compare the current value (K − S1)+ with the estimated
continuation value E(Z2|S1) to get a (sub)-optimal strategy in
t = 1.
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Approximate dynamic programming

path exercising est. cont. value
1 - -
2 - -
3 0.14 0.1414
4 0.25 0.2972
5 - -
6 0.04 0.0186
7 - -
8 0.16 0.1682
9 0.10 0.0902

10 - -

Table: value of exercising in t = 1 and estimated continuation
value.

For paths 6 and 9 the option should be exercised in t = 1.
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Approximate dynamic programming

path t = 1 t = 2 t = 3
1 0.00 0.00 0.00
2 0.00 0.00 0.06
3 0.00 0.10 0.00
4 0.00 0.30 0.00
5 0.00 0.00 0.00
6 0.04 0.00 0.00
7 0.00 0.00 0.00
8 0.00 0.21 0.00
9 0.10 0.00 0.00

10 0.00 0.00 0.00

Table: Cash Flows of the option under this (sub)-optimal strategy.
Discounting and taking the mean gives a value of 0.07798.
Exercising in t = 0 is not optimal.
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Approximate dynamic programming

This idea can be extended to multiple stopping problems, giving
good bounds for the value of a swing option for any stochastic
process that can be simulated.

I don’t want to show the formulas with the technical details.
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Thank you for your attention!
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