Stochastic dynamic optimization for energy market problems

Alfred Müller

Vienna

9. Sept. 2011

Electricity Prices

Hourly electricity prices at the European Energy Exchange:

Electricity Prices

Properties of hourly electricity prices S_{t} :

- daily, weekly and yearly seasonalities,
- extreme price spikes,
- strong mean reversion,
- state dependent volatility,
- long-term non-stationarity.
\rightarrow complicated stochastic process.

Electricity Prices

SMaPS-Modell of Burger et al. (2004):
(spot market price simulation model)

$$
\ln \left(S_{t}\right)=f\left(t, L_{t} / v_{t}\right)+X_{t}+Y_{t}, \quad t=0,1,2, \ldots
$$

mit

- $\left(L_{t}\right)_{t \geq 0}$: load process
- $f(t, \cdot), t \geq 0$: (logarithmic) price-load curves
- $\left(v_{t}\right)_{t \geq 0}$: expected availability of power plants
- $\left(X_{t}\right)_{t \geq 0}$: (stationary) short term process (calibrated to spot market data)
- $\left(Y_{t}\right)_{t \geq 0}$: (non-stationary) long term process (calibrated to futures data)
$\left(L_{t}\right),\left(X_{t}\right),\left(Y_{t}\right)$ independent.

Electricity Prices

price-load curves $f(t, \cdot)$:

- cubic splines fitted to data
short term process X_{t} :
SARIMA $(2,0,1) \times(1,0,1)_{24}$ time series model
load process $L_{t}=\ell_{t}+L_{t}^{\prime}$:
ℓ_{t} : deterministic load forecast
(describes the main seasonalities!)
$L_{t}^{\prime}: \operatorname{SARIMA}(1,0,1) \times(1,0,1)_{24}$ time series model
long term process Y_{t} :
- random walk mit drift

Electricity Prices

Simulation model:

20 simulations of price paths

Dynamic Optimization Problems

Stochastic dynamic optimization problems in energy markets

- valuation of gas storage facilities
- valuation of swing options

Example Swing Option

fixed energy amount: A

capacity limit: C
delivery spread over time points t_{1}, \ldots, t_{N}.
strike price K
Optimization problem:

$$
\begin{align*}
V_{\text {Swing }} & =\max _{\phi}\left\{\sum_{i=1}^{N} E^{*}\left[\phi\left(t_{i}\right)\left(S_{t_{i}}-K\right)\right]\right\} \tag{1}\\
\text { s.t. } & \sum_{i=1}^{N} \phi\left(t_{i}\right)=A, \quad 0 \leq \phi\left(t_{i}\right) \leq C \quad(i=1, \ldots, N) \\
& \phi\left(t_{i}\right) \quad \mathcal{F}_{t_{i}}-\operatorname{adapted}(i=1, \ldots, N)
\end{align*}
$$

with $\phi(t)$ capacity at time t.
Optimal solution??

Example Swing Option

Assume that S_{1}, S_{2}, \ldots are independent.
\rightarrow Markov decision process, known as
"stochastic sequential assignment problem":
Let $V_{t}(e, p)$ optimal expected reward from t on, if energy amount e is still available and current price is p.
Bellman equations:

$$
V_{t}(e, p)=\max _{0 \leq \phi(t) \leq c}\left\{\phi(t)(p-K)+E V_{t+1}\left(e-\phi(t), S_{t+1}\right)\right\}
$$

Optimal policy is Swing-strategy of threshold type:

$$
\phi(t)= \begin{cases}C & , \text { if } p \geq k_{t}(e) \\ 0 & , \text { else }\end{cases}
$$

for some k_{t}.

Example Swing Option

Asymptotically optimal for large N :

$$
\phi(t)= \begin{cases}C & , \text { if } p \geq F_{S}^{-1}(1-\alpha) \\ 0 & , \text { else }\end{cases}
$$

where $\alpha=A / C N$.
Is this still true for more realistic stochastic processes $\left(S_{t}\right)$?

Example Swing Option

Assume that S_{1}, S_{2}, \ldots is Markovian process with $S_{t+1}=g\left(S_{t}, Y_{t+1}\right)$.
Bellman equation:

$$
V_{t}\left(e, s_{t}\right)=\max _{0 \leq \phi(t) \leq C}\left\{\phi(t)\left(s_{t}-K\right)+E\left[V_{t+1}\left(e-\phi(t), S_{t+1}\right) \mid S_{t}=s_{t}\right]\right\}
$$

Optimal policy is still bang-bang-strategy, i.e. $\phi(t) \in\{0, C\}$. This holds under very general assumptions.
-> reduction to multiple stopping problem with n stopping times.

$$
\begin{aligned}
V_{t}\left(n, z_{t}\right)= & \max \left\{z_{t}+E\left[V_{t+1}\left(n-1, Z_{t+1}\right) \mid Z_{t}=z_{t}\right]\right. \\
& \left.E\left[V_{t+1}\left(n, Z_{t+1}\right) \mid Z_{t}=z_{t}\right]\right\}
\end{aligned}
$$

Example Swing Option

Optimal policy is not necessarily threshold strategy. Example: let $S_{1} \sim U(2,4), S_{2}=2 S_{1}-3 \sim U(1,5), n=1$ (optimal stopping problem).

Obvious solution: stop in $t=1$, if $S_{1} \leq 3!!$
Optimal policy is of threshold type under the assumption that

$$
\|g(\cdot, y)\|_{L} \leq 1 \text { for all } y
$$

Example Swing Option

In general no explicit solution in case of complicated stochastic process for spot price S_{t}.
-> need for good approximations, upper and lower bounds.
Any admissible policy delivers a lower bound. A very simple lower bound used in practice is given by the ex ante strategy looking only at the current futures prices.

A very simple upper bound is given ex post by the so called prophet value.

Example Swing Option

Better bounds:
Good lower bounds by approximate dynamic programming with simulation algorithms like least square Monte Carlo.

Good upper bounds by duality theory developped by Rogers (2002) and Meinshausen and Hambly (2004).

Explanation with example of optimal stopping ($n=1$).

Example Swing Option

Given any stochastic process $\left(Z_{t}, t=0,1, \ldots, T\right)$ the following result of Rogers (2002) holds.

Theorem

$$
\sup _{\tau} E\left(Z_{\tau}\right)=\inf _{M \in H_{0}} E\left[\sup _{t}\left(Z_{t}-M_{t}\right)\right]
$$

where H_{0} is the set of all martingales with $M_{0}=0$.
The infimum is attained for M^{*} the martingale from the Doob-Meyer-decomposition of the Snell envelope

$$
M_{t}^{*}-M_{t-1}^{*}=V_{t}\left(Z_{t}\right)-E\left[V_{t}\left(Z_{t}\right) \mid Z_{t-1}\right] .
$$

-> any good policy (approximation \tilde{V} of the value function) delivers also a good upper bound via

$$
M_{t}-M_{t-1}=\tilde{V}_{t}\left(Z_{t}\right)-E\left[\tilde{V}_{t}\left(Z_{t}\right) \mid Z_{t-1}\right]
$$

Example Swing Option

In case of an ergodic Markov chain $\left(S_{t}\right)$ a good policy for large N is given (under a few technical assumptions) by the assymptotically optimal strategy

$$
\phi(t)= \begin{cases}C & , \text { if } p \geq \pi^{-1}(1-\alpha) \\ 0 & , \text { else }\end{cases}
$$

where $\alpha=A / C N$ and π is the stationary distribution of the Markov chain.

Approximate dynamic programming

An approximation \tilde{V} of the value function can also be obtained via least square Monte Carlo, suggested by Longstaff and Schwartz (2001).

Example of a put option with $T=3, K=1.05, r=0.02$.
Given: 10 simulated paths of a stochastic process S_{t}.
Goal: approximation of the value of the option and good exercising strategy.

We approximate the continuation value $E\left[\tilde{V}_{t}\left(S_{t}\right) \mid S_{t-1}\right]$ via polynomials of 2 . degree (basis functions $1, x, x^{2}$).

$\mathbf{U}_{\text {Iivespiri }}$ Approximate dynamic programming

path	$t=0$	$t=1$	$t=2$	$t=3$
1	1.00	1.06	1.10	1.27
2	1.00	1.18	1.04	0.99
3	1.00	0.91	0.95	0.94
4	1.00	0.80	0.75	0.90
5	1.00	1.10	1.30	1.38
6	1.00	1.01	1.03	1.15
7	1.00	1.11	1.56	1.44
8	1.00	0.89	0.84	0.90
9	1.00	0.95	0.95	0.96
10	1.00	1.20	1.05	1.07

Table: Simulated paths of the stochastic process.
$\mathfrak{U}_{\substack{\text { Sickespirif }}}^{\text {mpproximate dynamic programming }}$

path	$t=1$	$t=2$	$t=3$
1	-	-	0.00
2	-	-	0.06
3	-	-	0.11
4	-	-	0.15
5	-	-	0.00
6	-	-	0.00
7	-	-	0.00
8	-	-	0.15
9	-	-	0.09
10	-	-	0.00

Table: Cash Flows Z_{3} if exercising only at the end.

Ansatz: $E\left[Z_{3} \mid S_{2}\right] \approx a+b S_{2}+c S_{2}^{2}$
$\hat{\mathbf{U}}_{\text {Silece }}^{\text {nusiri }}$ Approximate dynamic programming

Least squares method delivers the regression:

$$
E\left(Z_{3} \mid S_{2}\right) \approx-0.9415+2.8064 S_{2}-1.8033 S_{2}^{2}
$$

Comparing current value $\left(K-S_{2}\right)_{+}$with the estimated continuation values gives a (sub)-optimal strategy for $t=2$.

Approximate dynamic programming

Path	$\left(K-S_{2}\right)_{+}$	est. cont. value
1	-	-
2	0.01	0.0266
3	0.10	0.0970
4	0.30	0.1489
5	-	-
6	0.02	0.0359
7	-	-
8	0.21	0.1434
9	0.10	0.0970
10	-	-

Table: Value of exercising the option in $t=2$ and estimated continuation value.

For path 2 and 6 wait, otherwise exercise in $t=2$.

path	$t=1$	$t=2$	$t=3$
1	-	0.00	0.00
2	-	0.00	0.06
3	-	0.10	0.00
4	-	0.30	0.00
5	-	0.00	0.00
6	-	0.00	0.00
7	-	0.00	0.00
8	-	0.21	0.00
9	-	0.10	0.00
10	-	0.00	0.00

Table: Cash Flows of exercising in $t=2$ or $t=3$.

Approximate dynamic programming

Now regression of the discounted cash flow Z_{2} in relation to the current price S_{1}. Least squares method gives:

$$
E\left(Z_{2} \mid S_{1}\right) \approx 2.0789-2.9407 S_{1}+0.8919 S_{1}^{2} .
$$

Compare the current value $\left(K-S_{1}\right)_{+}$with the estimated continuation value $E\left(Z_{2} \mid S_{1}\right)$ to get a (sub)-optimal strategy in $t=1$.

UNIVERSITÄT SIECEN
 Approximate dynamic programming

path	exercising	est. cont. value
1	-	-
2	-	-
3	0.14	0.1414
4	0.25	0.2972
5	-	-
6	0.04	0.0186
7	-	-
8	0.16	0.1682
9	0.10	0.0902
10	-	-

Table: value of exercising in $t=1$ and estimated continuation value.

For paths 6 and 9 the option should be exercised in $t=1$.

Approximate dynamic programming

path	$t=1$	$t=2$	$t=3$
1	0.00	0.00	0.00
2	0.00	0.00	0.06
3	0.00	0.10	0.00
4	0.00	0.30	0.00
5	0.00	0.00	0.00
6	0.04	0.00	0.00
7	0.00	0.00	0.00
8	0.00	0.21	0.00
9	0.10	0.00	0.00
10	0.00	0.00	0.00

Table: Cash Flows of the option under this (sub)-optimal strategy. Discounting and taking the mean gives a value of 0.07798 . Exercising in $t=0$ is not optimal.

This idea can be extended to multiple stopping problems, giving good bounds for the value of a swing option for any stochastic process that can be simulated.

I don't want to show the formulas with the technical details.

UNIVERSITÄT

Thank you for your attention!

