Risk-Averse Optimal Path Problems for Markov Models

Andrzej Ruszczyński and Özlem Çavuş

Georg Pflug Anniversary Workshop Vienna 2011

How to Measure Risk of Sequences?

Probability space (Ω, \mathcal{F}, P) with filtration $\mathcal{F}_1 \subset \cdots \subset \mathcal{F}_T \subset \mathcal{F}$ Adapted sequence of random variables (costs) Z_1, Z_2, \ldots, Z_T Spaces: $\mathcal{Z}_t = \mathcal{L}_p(\Omega, \mathcal{F}_t, P), p \in [1, \infty]$, and $\mathcal{Z}_{t,T} = \mathcal{Z}_t \times \cdots \times \mathcal{Z}_T$

Conditional Risk Measure

A mapping $\rho_{t,T}: \mathcal{Z}_{t,T} \to \mathcal{Z}_t$ satisfying the monotonicity condition:

$$\rho_{t,T}(Z) \leq \rho_{t,T}(W)$$
 for all $Z, W \in \mathcal{Z}_{t,T}$ such that $Z \leq W$

Dynamic Risk Measure

A sequence of conditional risk measures $\rho_{t,T}: \mathcal{Z}_{t,T} \to \mathcal{Z}_t, t = 1, \dots, T$

$$\rho_{1,T}(Z_1, Z_2, Z_3, \dots, Z_T) \in \mathcal{Z}_1 = \mathbb{R}$$

$$\rho_{2,T}(Z_2, Z_3, \dots, Z_T) \in \mathcal{Z}_2$$

$$\rho_{3,T}(Z_3, \dots, Z_T) \in \mathcal{Z}_3$$
:

Evaluating Risk on a Scenario Tree

Evaluating Risk on a Scenario Tree

Evaluating Risk on a Scenario Tree

Time Consistency of Dynamic Risk Measures

A dynamic risk measure $\{\rho_{t,T}\}_{t=1}^{T}$ is time-consistent if for all $\tau < \theta$

$$Z_k = W_k, \ k = \tau, \dots, \theta - 1 \quad \text{and} \quad \rho_{\theta, T}(Z_\theta, \dots, Z_T) \le \rho_{\theta, T}(W_\theta, \dots, W_T)$$

imply that $\rho_{\tau,T}(Z_{\tau},\ldots,Z_{T}) \leq \rho_{\tau,T}(W_{\tau},\ldots,W_{T})$

Define $\rho_t(Z_{t+1}) = \rho_{t,T}(0, Z_{t+1}, 0, \dots, 0)$

Suppose a dynamic risk measure $\left\{ {{
ho _{t,T}}} \right\}_{t = 1}^T$ is time-consistent and

$$\rho_{t,T}(Z_t, Z_{t+1}, \dots, Z_T) = Z_t + \rho_{t,T}(0, Z_{t+1}, \dots, Z_T)$$
$$\rho_{t,T}(0, \dots, 0) = 0$$

Then for all t we have the nested representation

$$\rho_{t,T}(Z_t,\ldots,Z_T) = Z_t + \rho_t \Big(Z_{t+1} + \rho_{t+1} \big(Z_{t+2} + \cdots + \rho_{T-1}(Z_T) \cdots \big) \Big)$$

Stronger assumptions about one-step measures $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$:

- Convexity: $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$ $\forall \lambda \in (0, 1), \ Z, \ W \in \mathcal{Z}_{t+1}$
- Monotonicity: If $Z \leq W$ then $\rho_t(Z) \leq \rho_t(W), \ \forall \ Z, \ W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance: $\rho_t(Z + W) = Z + \rho_t(W), \ \forall \ Z \in \mathcal{Z}_t, \ W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity: $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \geq 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

Example: Conditional Mean-Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\Big[\big(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\big)_+^s \big|\mathcal{F}_t\Big]^{\frac{1}{s}}$$

Stronger assumptions about one-step measures $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$:

- Convexity: $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$ $\forall \lambda \in (0, 1), \ Z, \ W \in \mathcal{Z}_{t+1}$
- Monotonicity: If $Z \leq W$ then $\rho_t(Z) \leq \rho_t(W), \ \forall \ Z, \ W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance: $\rho_t(Z + W) = Z + \rho_t(W), \ \forall \ Z \in \mathcal{Z}_t, \ W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity: $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \geq 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

Example: Conditional Mean-Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\Big[\big(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\big)_+^s \big|\mathcal{F}_t\Big]^{\frac{1}{s}}$$

Stronger assumptions about one-step measures $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$:

- Convexity: $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$ $\forall \lambda \in (0, 1), \ Z, \ W \in \mathcal{Z}_{t+1}$
- Monotonicity: If $Z \leq W$ then $\rho_t(Z) \leq \rho_t(W), \ \forall \ Z, \ W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance: $\rho_t(Z + W) = Z + \rho_t(W), \ \forall \ Z \in \mathcal{Z}_t, \ W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity: $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \geq 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

Example: Conditional Mean-Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\Big[\big(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\big)_+^s \big|\mathcal{F}_t\Big]^{\frac{1}{s}}$$

Stronger assumptions about one-step measures $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$:

- Convexity: $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$ $\forall \lambda \in (0, 1), \ Z, \ W \in \mathcal{Z}_{t+1}$
- Monotonicity: If $Z \leq W$ then $\rho_t(Z) \leq \rho_t(W), \ \forall \ Z, \ W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance: $\rho_t(Z + W) = Z + \rho_t(W), \ \forall \ Z \in \mathcal{Z}_t, \ W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity: $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \geq 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

Example: Conditional Mean-Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\Big[\big(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\big)_+^s \big|\mathcal{F}_t\Big]^{\frac{1}{s}}$$

Stronger assumptions about one-step measures $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$:

- Convexity: $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$ $\forall \lambda \in (0, 1), \ Z, \ W \in \mathcal{Z}_{t+1}$
- Monotonicity: If $Z \leq W$ then $\rho_t(Z) \leq \rho_t(W), \ \forall \ Z, \ W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance: $\rho_t(Z + W) = Z + \rho_t(W), \ \forall \ Z \in \mathcal{Z}_t, \ W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity: $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \geq 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

Example: Conditional Mean-Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\Big[\big(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\big)_+^s \big|\mathcal{F}_t\Big]^{\frac{1}{s}}$$

Stronger assumptions about one-step measures $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$:

- Convexity: $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$ $\forall \lambda \in (0, 1), \ Z, \ W \in \mathcal{Z}_{t+1}$
- Monotonicity: If $Z \leq W$ then $\rho_t(Z) \leq \rho_t(W), \ \forall \ Z, \ W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance: $\rho_t(Z + W) = Z + \rho_t(W), \ \forall \ Z \in \mathcal{Z}_t, \ W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity: $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \geq 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

Example: Conditional Mean-Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\Big[\big(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\big)_+^s \big|\mathcal{F}_t\Big]^{\frac{1}{s}}$$

Controlled Markov Models

- Finite state space X
- Finite control space U
- Feasible control sets $U: \mathcal{X} \rightrightarrows \mathcal{U}$
- Controlled transition matrices Q(u)
- Cost function $c: \mathcal{X} \times \mathcal{U} \times \mathcal{X} \rightarrow \mathbb{R}$
- State history \mathcal{X}^t (up to time t = 1, 2, ...)
- Policy $\pi_t : \mathcal{X}^t \to \mathcal{P}(\mathcal{U}), \ t = 1, 2, \dots$ (with distributions supported on $U(x_t)$)
- Markov policy $\pi_t : \mathcal{X} \to \mathcal{P}(\mathcal{U}), t = 1, 2, ...$ (stationary if $\pi_t = \pi_1$ for all t) $x_t \longrightarrow u_t \sim \pi_t(x_t)$ $(x_t, u_t) \longrightarrow x_{t+1} \sim Q_{x_{t+1}}(u_t)$

Assumption: For every Markov policy the chain is absorbing with some absorbing state x_A

The Risk-Neutral Optimal Path Problem

$$\min_{\pi_1,\pi_2,\dots} \mathbb{E}\left[\sum_{t=1}^{\infty} c(x_t, u_t, x_{t+1})\right]$$

with controls $u_t \sim \pi_t(x_1, \ldots, x_t)$

- The problem has an optimal solutions in form of a deterministic Markov policy
- The optimal policy can be found by dynamic programming equations
- It is sufficient to consider cost functions of form $\bar{c}(x_t, u_t)$.

Our Intention

Introduce risk aversion to both problems by replacing the expected value by dynamic risk measures

Using Dynamic Risk Measures for Markov Decision Processes

- Controlled Markov process x_t , t = 1, ..., T, T + 1
- Policy $\Pi = \{\pi_1, \pi_2, \dots, \pi_T\}$ defines $u_t \sim \pi_t(x_t)$
- Cost sequence $Z_t = c(x_{t-1}, u_{t-1}, x_t), t = 2, ..., T + 1$
- Dynamic time-consistent risk measure

$$J(\Pi) = \rho_1 \Big(c(x_1, u_1, x_2) + \rho_2 \Big(c(x_2, u_2, x_3) + \dots + \rho_T (c(x_T, u_T, x_{T+1})) + \dots \Big) \Big)$$

Risk-averse optimal control problem

$$\min_{\boldsymbol{\varPi}} \boldsymbol{J}(\boldsymbol{\varPi})$$

Difficulty

The value of $\rho_t(\cdot)$ is \mathcal{F}_t -measurable and is allowed to depend on the entire history of the process. We cannot expect a Markov optimal policy if our attitude to risk depends on the whole past

New Construction of a Conditional Risk Measure

• Consider functions of the pair control–next state, in a fixed space $V = U \times X$:

$$c_x(u, y) = c(x, u, y), \quad u \in \mathcal{U}, \quad y \in \mathcal{X}$$

Additional argument: distribution of the control—next state pair

$$[\lambda \circ Q_x](u, y) = \lambda(u)q_{x,y}(u), \quad u \in \mathcal{U}, \quad y \in \mathcal{X}$$

The set of probability measures on $\mathcal{U} \times \mathcal{X}$:

$$\mathbb{P} = \left\{ p \in \mathcal{V} : \sum_{u \in \mathcal{U}} \sum_{y \in \mathcal{X}} p(u, y) = 1, \ p \ge 0 \right\}.$$

A measurable function $\sigma: \mathcal{V} \times \mathcal{X} \times \mathbb{P} \to \mathbb{R}$ is a *risk transition mapping* if for every $x \in \mathcal{X}$ and every $p \in \mathbb{P}$, the function $\varphi \mapsto \sigma(\varphi, x, p)$ is a coherent measure of risk on \mathcal{V}

Markov Risk Measures

A one-step conditional risk measure $\rho_t: \mathcal{Z}_{t+1} \to \mathcal{Z}_t$ is a Markov risk measure with respect to $\{x_t\}$, if there exists a risk transition mapping $\sigma_t: \mathcal{V} \times \mathcal{X} \times \mathbb{P} \to \mathbb{R}$ such that for all functions $w: \mathcal{X} \times \mathcal{U} \times \mathcal{X} \to \mathbb{R}$ and for all randomized controls λ on $U(x_t)$ we have

$$\rho_t(\mathbf{W}(\mathbf{X}_t, \mathbf{U}_t, \mathbf{X}_{t+1})) = \sigma_t(\mathbf{W}_{\mathbf{X}_t}, \mathbf{X}_t, \lambda \circ \mathbf{Q}_{\mathbf{X}_t})$$

A risk transition mapping $\sigma: \mathcal{V} \times \mathcal{X} \times \mathbb{P} \to \mathbb{R}$ is consistent with the first order stochastic dominance if for all φ, ψ in \mathcal{V} and all $p, q \in \mathbb{P}$ such that $F_{\varphi}^{p}(\cdot) \leq F_{\psi}^{q}(\cdot)$ we have $\sigma(\varphi, x, p) \geq \sigma(\psi, x, q)$ for all $x \in \mathcal{X}$

A risk transition mapping $\sigma: \mathcal{V} \times \mathcal{X} \times \mathbb{P} \to \mathbb{R}$ is proper if for all $\varphi \in \mathcal{V}$, all $x \in \mathcal{X}$, and all nontrivial $p \in \mathbb{P}$ we have

$$\sigma(\varphi, x, p) < \max \{ \varphi(u, y) : p(u, y) > 0 \}$$

Markov Risk Evaluation

t-1

t + 1

Markov Risk Evaluation

Markov Risk Evaluation

Risk of Infinite Sequences

Finite horizon risk

$$J_{T}(\Pi, x_{1}) = \rho_{1} \bigg(c(x_{1}, u_{1}, x_{2}) + \rho_{2} \bigg(c(x_{2}, u_{2}, x_{3}) + \cdots + \rho_{T} \bigg(c(x_{T}, u_{T}, x_{T+1}) \bigg) \cdots \bigg) \bigg)$$

Infinite horizon risk

$$J_{\infty}(\Pi, x_1) = \lim_{T \to \infty} J_T(\Pi, x_1)$$

Suppose the conditional risk measures ρ_t , $t=1,2,\ldots$ are Markov and share the same risk transition mapping $\sigma(\cdot,\cdot,\cdot)$, which is consistent with first order stochastic dominance and proper. Then for every stationary policy $\Pi=\{\pi,\pi,\ldots\}$ the limit $J_\infty(\Pi,x_1)$ is finite.

Dynamic Programming Equations

Suppose the risk transition mapping is consistent with first order dominance and proper. For a stationary policy $\Pi = \{\pi\}$ a function $v(x) \equiv J_{\infty}(\Pi, x)$ if and only if $v(x_A) = 0$ and

$$V(X) = \sigma(c_X + V, X, \pi(X) \circ Q_X), \quad X \in \mathcal{X}$$

The optimal value function

$$J^*(x) = \inf_{\Pi} J_{\infty}(\Pi, x), \quad x \in \mathcal{X}$$

In addition, suppose the risk transition mapping is continuous with respect to the third argument. Then $v(x) \equiv J^*(x)$ iff $v(x_A) = 0$ and

$$V(X) = \min_{\pi \in \mathcal{P}(U(X))} \sigma(c_X + V, X, \pi \circ Q_X), \quad X \in \mathcal{X}$$

The minimizer $\pi^*(x)$, $x \in \mathcal{X}$, defines an optimal randomized policy $\Pi^* = \{\pi^*\}$.

Example: Organ Transplant

Probability of Death, Jasiulewicz ('97)

Example: Organ Transplant

• Expected Total Reward:

The optimal policy is to wait

Mean Semi-Deviation with Deterministic Policies:

The optimal policy is to transplant

Mean Semi-Deviation with Randomized Policies:

Wait with probability 0.993983 and transplant with probability 0.006017

Summary

- Risk-averse stochastic shortest (longest) path problems are considered
- Markov conditional risk measures are introduced
- Finiteness of the overall risk is proved
- Dynamic programming equations are derived
- Randomized policies may be optimal
- Interesting applications follow