Risk-Averse Optimal Path Problems

for Markov Models

Andrzej Ruszczynski and Ozlem Cavus

RUTGERS

Georg Pflug Anniversary Workshop
Vienna 2011

Research supported by the NSF award CMMI-0965689



How to Measure Risk of Sequences?

Probability space (£2, F, P) with filtration 7y Cc --- Cc Fr C F
Adapted sequence of random variables (costs) Zy, 2, ..., Zr
Spaces: Zt = Lp(2, F1, P),pe[l,00,and Zi 7= Z; x --- x Z7
Conditional Risk Measure

A mapping o7 : 2.7 — 2Z; satisfying the monotonicity condition:

pt.7(Z) < pr7(W) forall Z, W € Z; rsuchthat Z < W

Dynamic Risk Measure
A sequence of conditional risk measures p;7: Zt7 — Z, t=1,..., T

o172, 2o, 23, ..., Z1) € 21 =R
p2.7(22, 23, ..., 21) € 2>
p3.7(Z3, ..., 2Z1) € Z3
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Evaluating Risk on a Scenario Tree
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Evaluating Risk on a Scenario Tree

p1.4(Z1. 22, Z3. Zy)
Z
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Evaluating Risk on a Scenario Tree

t=1
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Time Consistency of Dynamic Risk Measures

A dynamic risk measure {p;, T} is time-consistent if for all T < 6
Zk =Wk, k=rt,....,0 =1 and pg7(L,....2Z7) < po.7(Ws, ..., Wr)

imply that Pr,T(Zr, o271 < ,OT,T(WT, o W

Define pi(Zt+1) = pt.7(0, Zt11,0, ..., 0)
Suppose a dynamic risk measure {,Ot T} is time-consistent and

pt. 7Lt Zis - L) = 24t + p1,7(0, Zigq, .., ZT)
pt7(0,...,00=0

Then for all t we have the nested representation

pt.7(Lt, . L) = 4t + ,Ot(Zt+1 + i1 (Zrgz + -+ pr-1(Z7) - - - ))
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Coherent One-Step Conditional Risk Measures

Stronger assumptions about one-step measures p; : Zi 1 — Zi:
@ Convexity: pt(AZ + (1 — VW) < 2pi(2) + (1 — 1) p(W)
Viae(@,1), Z We Z 4
@ Monotonicity: If Z < W then pi(2) < pt(W), YZ, W € Z;,4

@ Predictable Translation Equivariance:
pt(Z+W)=Z+p (W), VZeZ, We Z4

@ Positive Homogeneity: pi(tZ) = 1p1(2),VZ € Zt14, T >0

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06),
Follmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Rémisch ('07)

Example: Conditional Mean—Semideviation

1
pt(Zt1) = E[Z141F] + KE[(Zm — E[Z441 |-7:t])i}7:t] ’

Here s € [1, p] and « € [0, 1] may be F;-measurable
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Controlled Markov Models

@ Finite state space X
@ Finite control space U
@ Feasible controlsets U: X = U
@ Controlled transition matrices Q(u)
@ Costfunctionc: X xU x X - R
@ State history X! (uptotimet=1,2,...)
@ Policy my : X' — PU), t=1,2,...
(with distributions supported on U(xy))

@ Markov policy 7 : X - PU), t=1,2,...

(stationary if 7y = 74 for all )

Xt —> Ut ~ 71(Xp)

(Xt, Ut) —> X1 ~ Qi (Up)

Assumption: For every Markov policy the chain is absorbing with some
absorbing state x,
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The Risk-Neutral Optimal Path Problem

o0
min E c(xt, Uy, X
min [Z (Xt, Ut t+1):|

t=1

with controls u; ~ m(xq, ..., X;)

@ The problem has an optimal solutions in form of a deterministic
Markov policy

@ The optimal policy can be found by dynamic programming
equations

@ ltis sufficient to consider cost functions of form ¢(x;, uy).

Our Intention

Introduce risk aversion to both problems by replacing
the expected value by dynamic risk measures
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Using Dynamic Risk Measures for Markov Decision Processes

@ Controlled Markov process x;, t=1,..., T, T+ 1
@ Policy IT = {my, 72, ..., w7} defines uy ~ m4(x;)
@ Costsequence Z; = c(X;_1, Us_1, Xp), t=2,..., T + 1

@ Dynamic time-consistent risk measure
JUT) = py (C(X1, Ut, X2) + p2(C(Xe, Uz, X3) +- - -+ pT(C(XT, UT, XT41)) - - ))
@ Risk-averse optimal control problem
mnm JUT)

Difficulty

The value of p;(-) is Fi-measurable and is allowed to depend on the
entire history of the process. We cannot expect a Markov optimal policy
if our attitude to risk depends on the whole past
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New Construction of a Conditional Risk Measure

@ Consider functions of the pair control-next state,
ina fixed space V =U x X

cx(u,y)y=cx,u,y), ueld, yekX
@ Additional argument: distribution of the control—-next state pair
Ao QuU, y) =A(Waxy(W), UelU, yekX

The set of probability measures on i/ x X':

P:{peV:ZZp(u,y):L pzo}.

ueld yeX

for every x € X and every p € P, the function ¢ — o (¢, X, p) is a

A measurable function o : V x X x P — R is a risk transition mapping if
coherent measure of risk on V J
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Markov Risk Measures

A one-step conditional risk measure p; : Zi1 — Z; is a Markov risk
measure with respect to {x;}, if there exists a risk transition mapping
otV x X x P — R such that for all functions w: X x4 x X — R and
for all randomized controls A on U(x;) we have

pt(W(Xt, Uty Xe1)) = 0t(Wag, Xps & 0 Q)

A risk transition mapping o : V x X x P — R is consistent with the first
order stochastic dominance if for all ¢, ¥ in V and all p, g € P such that
F7() < FJ()wehave o(p.Xx,p) = oy, x,q) forallx e X

A risk transition mapping o : V x X x P — R is proper if for all ¢ € V, all
x € X, and all nontrivial p € P we have

o(p, x,p) <max{e,y): pw,y) >0}

Andrzej Ruszczynski and Ozlem Gavus Risk-Averse Optimal Paths



Markov Risk Evaluation
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Markov Risk Evaluation
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Markov Risk Evaluation
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Risk of Infinite Sequences

Finite horizon risk
Jr(I1, x1) = p4 (C(X1, U1, X2) + pz(C(Xz, Uo, X3) + - -

-+ pr(ctxr, ur, XT40) - ))

Infinite horizon risk

Joo(IT, X1) = T|£noo Jr(11, xy)

Suppose the conditional risk measures p, t = 1,2, ... are Markov and
share the same risk transition mapping o (-, -, -), which is consistent with
first order stochastic dominance and proper. Then for every stationary
policy IT = {m, «, ...} the limit J (I, X1) is finite.
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Dynamic Programming Equations

Suppose the risk transition mapping is consistent with first order
dominance and proper. For a stationary policy IT = {x} a function
V(X) = J (11, x) if and only if v(x,) = 0 and

viX) =o(Cx+ V. X, m(X) 0 Qy), XeX

The optimal value function
J'(x) = iIr}fJoo(H, X), xeX

In addition, suppose the risk transition mapping is continuous with
respect to the third argument. Then v(x) = J*(x) iff v(x,) = 0 and

vix)= min o(ck+Vv.Xx,moQ), XeX
TeP(U(x))

The minimizer 7*(x), x € X, defines an optimal randomized policy
I = {7*).
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Example: Organ Transplant

2. Life with
new organ

High probability, if Transplant

1. Patient
Random Reward requires new > High probability, if Wait

organ Reward=1

Very low probability, if Wait
or
Low probability, if Transplant

3. Dead

"

Reward =0
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Probability of Death, Jasiulewicz ("97)
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Example: Organ Transplant

@ Expected Total Reward:
The optimal policy is to wait

@ Mean Semi-Deviation with Deterministic Policies:
The optimal policy is to transplant

@ Mean Semi-Deviation with Randomized Policies:

Wait with probability 0.993983 and transplant with probability
0.006017
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Risk-averse stochastic shortest (longest) path problems are
considered

@ Markov conditional risk measures are introduced
@ Finiteness of the overall risk is proved

@ Dynamic programming equations are derived

@ Randomized policies may be optimal

@ Interesting applications follow
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