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Are Quasi-Monte Carlo methods
efficient for two-stage stochastic programs ?
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Personal reminiscences

• First meeting with Georg in Köszeg, during August 1981,

• Similar mathematical interests during the last 20 years (empir-

ical approximations in SP, use of probability metrics, scenario

(tree) generation, risk measures, energy etc.),

• Cooperation during the last 10 years, joint project, visits, joint

book in 2007.

Congratulations and many thanks Georg !
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Introduction

The following are recent approaches to scenario generation in stochas-

tic programming besides Monte Carlo (MC):

(a) Optimal quantization of probability distributions (Pflug-Pichler 2010).

(b) Quasi-Monte Carlo (QMC) methods (Koivu-Pennanen 05).

(c) Sparse grid quadrature rules (Chen-Mehrotra 08).

While the justification of (a) may be based on stability analysis,

there is almost no reasonable justification of applying (b) and (c)

to two- and multi-stage models. The basic theoretical background

for (b) and (c) is similar.

There is encouraging progress of the underlying theory and of the

available computational experience of both methodologies during

the last 10 years, in particular, in finance.

Known convergence rates: MC O(n−
1
2), (a) O(n−

1
d)

(d dimension of random vector, n number of scenarios).
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Quasi-Monte Carlo methods

We consider the numerical integration of (Riemann) integrable func-

tions f over the unit cube [0, 1]d in Rd. The approximate compu-

tation of

Id(f ) =

∫
[0,1]d

f (ξ)dξ

by a Quasi-Monte Carlo (QMC) algorithm Qn,d means

Qn,d(f ) =
1

n

n∑
i=1

f (ξi) ,

where the points ξi, i = 1, . . . , n, belong to [0, 1]d.

We assume that f belongs to a linear normed space Fd with norm

‖ · ‖d and unit ball Bd. The worst-case error of Qn,d over Bd is

e(Qn,d) = sup
f∈Bd
|Id(f )−Qn,d(f )|

and for n = 0 we formally set Q0,d = 0.
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Usally the smallest n = nmin(ε, d, {Qn,d}) ∈ N is considered such

that

e(Qn,d) ≤ ε e(Q0,d) = ε ‖Id‖,
holds for every ε ∈ (0, 1).

A family {Qn,d} of QMC algorithms is called tractable if there exist

nonnegative constants C, q and p such that

nmin(ε, d, {Qn,d}) ≤ C dqε−p

holds for every ε ∈ (0, 1). Of course, q = 0 is desirable.

Example of Fd: Tensor product Sobolev space

Fd = W
(s,...,s)
r,mix ([0, 1]d) =

d⊗
i=1

W s
r ([0, 1]) (s ≥ 1, 1 ≤ r ≤ ∞).

contains all functions for which weak partial derivatives of order s

exist with respect to each variable. For s = 1 the partial derivative

∂df (ξ)

∂ξ1 · · · ∂ξd
has to exist (in the sense of Sobolev).
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Classical QMC results

For each n ∈ N and ξi ∈ [0, 1]d, i = 1, . . . , n, the star-discrepancy

is considered

D∗n,d(ξ
1, . . . , ξn) = sup

ξ∈[0,1]d

∣∣∣∣∣λd([0, ξ))− 1

n

n∑
i=1

1l[0,ξ)(ξ
i)

∣∣∣∣∣ .
Theorem: There exist sequences {ξi}i∈N such that

D∗n,d(ξ
1, . . . , ξn) = O(n−1(log n)d−1) = O(n−1+δ) (∀δ ∈ (0, 1/2]).

However, the leading coefficients depend on d and increase with d

even for the best known sequences by Sobol, Faure and Niederreiter.

Theorem: (Koksma-Hlawka 1961)

If f is of bounded variation in the sense of Hardy and Krause, it

holds for any d and n belonging to N

|Id(f )−Qn,d(f )| ≤ VHK(f )D∗n,d(ξ
1, . . . , ξn) .
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Integrands in linear two-stage stochastic programming

Two-stage linear stochastic programs with random right-hand sides:

min
{
〈c, x〉 +

∫
Ξ

Φ(ξ − Tx)P (dξ) : x ∈ X
}

where c ∈ Rm, X is a polyhedral subset of Rm, Ξ a closed subset

of Rd, T a (r,m)-matrix, P a Borel probability measure on Ξ and

Φ(t) = inf{〈q, y〉 : Wy = t, y ≥ 0}
= sup{〈t, z〉 : W>z ≤ q} = sup

z∈D
〈t, z〉 ,

where q ∈ Rm̄, W a (r, m̄)-matrix (having rank r) and t varies

in the polyhedral cone W (Rm̄). There exist vertices vj of D and

polyhedral cones Kj, j = 1, . . . , `, decomposing dom Φ such that

Φ(t) = 〈vj, t〉, ∀t ∈ Kj, and Φ(t) = maxj=1,...,`〈vj, t〉. Hence, the

integrands are of the form

f (ξ) = max
j=1,...,`

〈vj, ξ − Tx〉.

Problem: f is not of bounded variation in the HK sense.
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Multivariate integration by randomly shifted lattice rules

Let γ1 ≥ γ2 ≥ · · · ≥ γd > 0 and set γu =
∏

j∈u γj.

Theorem: (weighted Koksma-Hlawka inequality)

If all partial derivatives of f exist and are continuous, it holds

|Id(f )−Qn,d(f )| ≤ Dn,d,γ(ξ
1, . . . , ξn)‖f‖d,γ,

where disc(ξ) = |λd([0, ξ))− 1
n

∑n
i=1 1l[0,ξ)(ξ

i)|,

Dn,d,γ(ξ
1, . . . , ξd) =

 ∑
∅6=u⊂D

γu

∫
[0,1]|u|

disc2(ξu, 1−u)dξu

1
2

is the weighted L2-discrepancy and ‖f‖2
d,γ = 〈f, f〉d,γ with

〈f, g〉d,γ =
∑
u⊂D

γ−1
u

∫
[0,1]|u|

∂|u|

∂ξu
f (ξu, 1−u)

∂|u|

∂ξu
g(ξu, 1−u)dξu.

Weighted tensor product Sobolev space:

Fd,γ =
{
f ∈ W (1,...,1)

2,mix ([0, 1]d) : ‖f‖d,γ <∞
}
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Theorem: (Sloan-Wožniakowski 98)

There exist QMC algorithms satisfying nmin(ε, d, {Qn,d}) ≤ C ε−p

with p ∈ [1, 2] on Fd,γ iff
∑∞

j=1 γj <∞.

Randomly shifted rank-1 lattice rules:

Qn,d(f ) =
1

n

n−1∑
k=0

f
({kz

n
+4

})
,

where z ∈ Zd, {x} means componentwise the fractional part of x

and 4 is a uniformly distributed random variable in [0, 1]d.

Theorem: (Sloan-Kuo-Joe 02, Kuo 03)

Let n be prime. Then z ∈ Zd can be constructed component-by-

component such that for every 0 < δ ≤ 1
2

e(Qn,d) ≤ Cd(δ)n
−1+δ‖Id‖

holds on Fd,γ for some Cd(δ).

The constant Cd(δ) may be chosen to be independent on d if
∞∑
j=1

γ
1

2(1−δ)
j <∞.



Home Page

Title Page

Contents

JJ II

J I

Page 10 of 23

Go Back

Full Screen

Close

Quit

The construction and convergence results are extended from [0, 1]d

to Rd and probability densities on Rd of the form

ρd(ξ) =

d∏
j=1

ρ(ξj) (ξ ∈ Rd)

by the transformation Φ−1(ξi), i = 1, . . . , n, where Φ is a mapping

from Rd to [0, 1]d given by

Φ(u) = (φ(u1, . . . , φ(ud)),

and φ is the distribution function of the density ρ.

(Kuo-Sloan-Wasilkowski-Waterhouse 10)
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ANOVA decomposition of multivariate functions

Idea: If f isn’t of bounded variation or smooth, decompositions

of f may be used, where only some of the terms are relevant and,

hopefully, are of bounded variation or smooth.

Let D = {1, . . . , d} and f ∈ L1,ρd(R
d). The projection Pk, k ∈ D,

is defined by

(Pkf )(ξ) :=

∫ ∞
−∞

f (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρ(s)ds (ξ ∈ Rd).

Clearly, the function Pkf is constant with respect to ξk. For u ⊆ D

we write

Puf =
(∏
k∈u

Pk

)
(f ),

where the product means composition, and note that the ordering

within the product is not important because of Fubini’s theorem.

The function Puf is constant with respect to all xk, k ∈ u. Note

that Pu satisfies the properties of a projection, namely, Pu is linear

and it holds P 2
u = Pu.



Home Page

Title Page

Contents

JJ II

J I

Page 12 of 23

Go Back

Full Screen

Close

Quit

ANOVA-decomposition of f :

f =
∑
u⊆D

fu ,

where f∅ = Id(f ) = PD(f ) and recursively

fu = P−u(f )−
∑
v⊆u

fv

or

fu =
∑
v⊆u

(−1)|u|−|v|P−vf = P−u(f ) +
∑
v⊂u

(−1)|u|−|v|Pu−v(P−u(f )),

where P−u and Pu−v mean integration with respect to ξj, j ∈ D\u
and j ∈ u \ v, respectively. The second representation motivates

that fu is essentially as smooth as P−u(f ).

Proposition:
If f belongs to L2,ρd(R

d), the ANOVA functions {fu}u⊆D are or-

thogonal in L2,ρd(R
d).
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We set σ2(f ) = ‖f − Id(f )‖2
L2

and have

σ2(f ) = ‖f‖2
L2
− (Id(f ))2 =

∑
∅6=u⊆D

‖fu‖2
L2
.

The truncation dimension dt of f is the smallest dt ∈ N such that∑
u⊆{1,...,dt}

‖fu‖2
L2
≥ pσ2(f ) (where p ∈ (0, 1) is close to 1).

Then it holds ∥∥∥f − ∑
u⊆{1,...,dt}

fu

∥∥∥
L2
≤ (1− p)σ2(f ).

(Wang-Fang 03, Kuo-Sloan-Wasilkowski-Woźniakowski 10, Griebel-Holtz 10)

According to an observation of Griebel-Kuo-Sloan 10 the fu can be

smoother than f under certain conditions.
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ANOVA decomposition of integrands in two-stage models

Assumption:
(A1) W (Rm̄

+) = Rd (complete recourse).

(A2) D 6= ∅ (dual feasibility).

(A3)
∫

Rd ‖ξ‖P (dξ) <∞.

(A4) P has a density of the form ρd(ξ) =
∏d

j=1 ρ(ξj) (ξ ∈ Rd).

(A1) and (A2) imply that D is bounded and, hence, it is the convex

hull of its vertices. Furthermore, the cones Kj are the normal cones

to D at the vertices vj, i.e.,

Kj = {t ∈ dom Φ : 〈t, z − vj〉 ≤ 0, ∀z ∈ D} (j = 1, . . . , `)

= {t ∈ dom Φ : 〈t, vi − vj〉 ≤ 0, ∀i = 1, . . . , `, i 6= j}.

It holds that ∪j=1,...,`Kj = dom Φ and for j 6= j′ the intersection

Kj ∩ Kj′ is a common closed face of dimension d − 1 iff the two

cones are adjacent. In the latter case, the intersection is contained

in

{t ∈ Rd : 〈t, vj′ − vj〉 = 0}.
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To compute projections Pk(f ) for k ∈ D. Let ξi ∈ R, i = 1, . . . , d,

i 6= k, be given. We set ξk = (ξ1, . . . , ξk−1, ξk+1, . . . , ξd) and

ξs = (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd) ∈ dom Φ = ∪j=1,...,`Kj.

Assuming (A1)–(A4) it is possible to derive an explicit representa-

tion of Pk(f ) that depends on ξk and on the finitely many points

at which the one-dimensional affine subspace {ξs : s ∈ R} meets

the common face of two adjacent cones. This leads to

Proposition:
Let k ∈ D. Assume (A1)–(A4) and that all adjacent vertices of D
have different kth components.

The kth projection Pkf is continuously differentiable if the one-

dimensional density ρ is continuous. Pkf is in C∞ if ρ ∈ C∞(R).

Theorem:
Let u ⊂ D. Assume (A1)–(A4) and that all adjacent vertices of D
have different components.

Then the ANOVA term fu is infinitely differentiable if ρ ∈ C∞(R).
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Example:
Let m̄ = 3, d = 2, Ξ = R2, P denote the two-dimensional standard

normal distribution and let the following vector q and matrix W

W =

(
−1 1 0

1 1 −1

)
q =

 1

1

0


be given. Then (A1) and (A2) are satisfied and the dual feasible

set D is the triangle (in R2)

D = {z ∈ R2 : −z1 + z2 ≤ 1, z1 + z2 ≤ 1,−z2 ≤ 0},

with the vertices

v1 =

(
1

0

)
v2 =

(
−1

0

)
v3 =

(
0

1

)
.

The normal cones Kj to D at vj, j = 1, 2, 3, are

K1 = {z ∈ R2 : z1 ≥ 0, z2 ≤ z1},
K2 = {z ∈ R2 : z1 ≤ 0, z2 ≤ −z1},
K3 = {z ∈ R2 : z2 ≥ z1, z2 ≥ −z1}.
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Figure 1: Illustration of D, its vertices vj and the normal cones Kj to its vertices

Hence, the second component of the two adjacent vertices v1 and

v2 coincides. The function Φ is of the form

Φ(t) = max
i=1,2,3

〈vi, t〉 = max{t1,−t1, t2} = max{|t1|, t2}

and the integrand is

f (ξ) = max{|ξ1 − [Tx]1|, ξ2 − [Tx]2}

The ANOVA projection P1f is in C∞, but P2f is not differentiable.
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Open problem: Truncation dimension of linear two-stage stochas-

tic programs ?
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Appendix: Functions of bounded variation

Let D = {1, . . . , d} and we consider subsets u of D with cardinality

|u|. By −u we mean −u = D \ u.

The expression ξu denotes the |u|-tuple of the components ξj, j ∈
u, of ξ ∈ Rd. For example, we write

f (ξ) = f (ξu, ξ−u).

We set the d-fold alternating sum of f over the d-dimensional

interval [a, b] as

4(f ; a, b) =
∑
u⊆D

(−1)|u|f (au, b−u).

Furthermore, we set for any v ⊆ u

4u(f ; a, b) =
∑
v⊆u

(−1)|v|f (av, b−v).
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Let Gj denote finite grids in [aj, bj), aj < bj, j = 1, . . . , d, and

G = ×di=1Gj a grid in [a, b) = ×di=1[aj, bj). For g ∈ G let g+ =

(g+
1 , . . . , g

+
d ), where g+

j is the successor of gj in Gj ∪ {bj}.
Then the variation of f over G is

VG(f ) =
∑
g∈G

|4(f ; g, g+)| .

If G denotes the set of all finite grids in [a, b), the variation of f on

[a, b] in the sense of Vitali is

V[a,b](f ) = sup
G∈G

VG(f ) .

The variation of f on [a, b] in the sense of Hardy and Krause is

VHK(f ; a, b) =
∑
u⊂D

V[a−u,b−u](f (ξ−u, bu)) .

Bounded variation on [a, b] in the sense of Hardy and Krause then

means VHK(f ; a, b) <∞.
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Proposition: (Owen 05)

Let d ≥ 3, bi ∈ R, i = 0, 1, . . . , d, and we consider for ξ ∈ [0, 1]d

f (ξ) = max{〈b, ξ〉 − b0, 0}.

If {ξ ∈ [0, 1]d : 〈b, ξ〉 = b0} has positive (d−1)-dimensional volume

and none of b1, . . . , bd is zero, it holds VHK(f ) =∞.
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